Back to Search Start Over

Atmospheric greenhouse gases retrieved from SCIAMACHY: comparison to ground-based FTS measurements and model results

Authors :
Schneising, O
Bergamaschi, p
Bovensmann, H
Buchwitz, M
Burrows, J P
Deutscher, N M
Griffith, D W. T
Heymann, J
Macatangay, R
Messerschmidt, J
Notholt, J
Rettinger, M
Reuter, M
Sussmann, R
Velazco, Voltaire A
Warneke, T
Wennberg, P O
Wunch, D
Schneising, O
Bergamaschi, p
Bovensmann, H
Buchwitz, M
Burrows, J P
Deutscher, N M
Griffith, D W. T
Heymann, J
Macatangay, R
Messerschmidt, J
Notholt, J
Rettinger, M
Reuter, M
Sussmann, R
Velazco, Voltaire A
Warneke, T
Wennberg, P O
Wunch, D
Source :
Faculty of Science - Papers (Archive)
Publication Year :
2012

Abstract

SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term columnaveraged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00± 0.16 ppm yr−1 compared to 1.94±0.03 ppm yr−1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences) of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences) of 1.1–1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to

Details

Database :
OAIster
Journal :
Faculty of Science - Papers (Archive)
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1408286603
Document Type :
Electronic Resource