Back to Search Start Over

Unzipping flood vulnerability and functionality loss:tale of struggle for existence of riparian buildings

Authors :
Gautam, Dipendra
Adhikari, Rabindra
Gautam, Suraj
Pandey, Vishnu Prasad
Thapa, Bhesh Raj
Lamichhane, Suraj
Talchabhadel, Rocky
Thapa, Saraswati
Niraula, Sunil
Aryal, Komal Raj
Lamsal, Pravin
Bastola, Subash
Sah, Sanjay Kumar
Subedi, Shanti Kala
Puri, Bijaya
Kandel, Bidur
Sapkota, Pratap
Rupakhety, Rajesh
Gautam, Dipendra
Adhikari, Rabindra
Gautam, Suraj
Pandey, Vishnu Prasad
Thapa, Bhesh Raj
Lamichhane, Suraj
Talchabhadel, Rocky
Thapa, Saraswati
Niraula, Sunil
Aryal, Komal Raj
Lamsal, Pravin
Bastola, Subash
Sah, Sanjay Kumar
Subedi, Shanti Kala
Puri, Bijaya
Kandel, Bidur
Sapkota, Pratap
Rupakhety, Rajesh
Publication Year :
2022

Abstract

Floods pose significant risk to riparian buildings as evidenced during many historical events. Although structural resilience to tsunami flooding is well studied in the literature, high-velocity and debris-laden floods in steep terrains are not considered adequately so far. Historical floods in steep terrains necessitate the need for flood vulnerability analysis of buildings. To this end, we report vulnerability of riparian-reinforced concrete buildings using forensic damage interpretations and empirical/analytical vulnerability analyses. Furthermore, we propose the concept and implications of functionality loss due to flooding in residential reinforced concrete (RC) buildings using empirical data. Fragility functions using inundation depth and momentum flux are presented for RC buildings considering a recent flooding event in Nepal. The results show that flow velocity and sediment load, rather than hydrostatic load, govern the damages in riparian RC buildings. However, at larger inundation depth, hydrostatic force alone may collapse some of the RC buildings.

Details

Database :
OAIster
Notes :
text, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1406144875
Document Type :
Electronic Resource