Back to Search Start Over

Subsurface sources contribute substantially to fine-grained suspended sediment transported in a tropical West African watershed, Burkina Faso

Authors :
Rode, Michael
Op de Hipt, F.
Collins, A.L.
Zhang, Y.
Theuring, Philipp
Schkade, U.K.
Diekkrüger, B.
Rode, Michael
Op de Hipt, F.
Collins, A.L.
Zhang, Y.
Theuring, Philipp
Schkade, U.K.
Diekkrüger, B.
Source :
ISSN: 1085-3278
Publication Year :
2018

Abstract

Increasing watershed sediment yields are an important problem in Africa but the sources of these sediment yields have only very rarely been investigated. This study therefor aims to discriminate subsurface and surface sources of fine grain sediments in a representative mesoscale (580 km2) West African savanna watershed. We used a sediment source fingerprinting approach for source apportionment including geochemical and radionuclide (137Cs, 210Pbex, 7Be) composite signatures where 7Be was used as a tracer for the first time in the African environment. Two field campaigns were conducted collecting a total of 258 geochemical and 66 isotope samples. We found that subsurface source categories, dominantly river bank, contributed an unexpected high share of 43% (geochemistry) and 45% (radionuclides) to the sampled fine‐grained sediments. Pairwise comparison of the averaged frequency distributions for predicted source proportions using five geochemical signatures with the frequency distribution generated using the single radionuclide signature suggested that the two distributions are not statistically different. Extrapolating our measured contribution of subsurface erosion to areas with similar yields in comparable environmental settings, we can assume that subsurface sources are an important component of sediment loss across large areas of West Africa. Subsurface erosion, primarily associated with bank rather than gully erosion, is likely to increase in the future with projected rises in runoff due to land use and climate change. Source tracing studies need to be undertaken more widely across Africa to help mitigation planning for sediment‐related and land degradation problems.

Details

Database :
OAIster
Journal :
ISSN: 1085-3278
Notes :
ISSN: 1085-3278, Land Degradation & Development 29 (11);; 4092 - 4105, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1406010578
Document Type :
Electronic Resource