Back to Search Start Over

Formation of Galactic Disks II: the Physical Drivers of Disk Spin-up

Authors :
Semenov, Vadim A.
Conroy, Charlie
Chandra, Vedant
Hernquist, Lars
Nelson, Dylan
Semenov, Vadim A.
Conroy, Charlie
Chandra, Vedant
Hernquist, Lars
Nelson, Dylan
Publication Year :
2023

Abstract

Using a representative sample of Milky Way (MW)-like galaxies from the TNG50 cosmological-volume simulation, we investigate physical processes driving the formation of galactic disks. A disk forms as a result of the interplay between inflow and outflow carrying angular momentum in and out of the galaxy. Interestingly, the inflow and outflow have remarkably similar distributions of angular momentum, suggesting an exchange of angular momentum and/or outflow recycling, leading to continuous feeding of pre-aligned material from the co-rotating circumgalactic medium. We show that disk formation in TNG50 is correlated with stellar bulge formation, in qualitative agreement with a recent theoretical model of disk formation facilitated by steep gravitational potentials. Disk formation is also correlated with the formation of a hot circumgalactic halo with a significant fraction of the inflow occurring at sub- and transonic velocities. In the context of recent theoretical works connecting disk settling and hot halo formation, our results imply that the subsonic part of the inflow may settle into a disk while the remaining supersonic inflow will perturb this disk via the chaotic cold accretion. We find that disks tend to form when the host halos become more massive than $\sim (1-2) \times 10^{11} M_\odot$, consistent with previous theoretical findings and observational estimates of the pre-disk protogalaxy remnant in the MW. Our results do not prove that either co-rotating outflow recycling, gravitational potential steepening, or hot halo formation cause disk formation but they show that all these processes occur concurrently and may play an important role in disk growth.<br />Comment: 22 pages, 15 figures; submitted to ApJ; comments are welcome

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1405315030
Document Type :
Electronic Resource