Back to Search
Start Over
Constraining the cosmic-ray pressure in the inner Virgo Cluster using H.E.S.S. observations of M 87
- Publication Year :
- 2023
-
Abstract
- The origin of the gamma-ray emission from M87 is currently a matter of debate. This work aims to localize the VHE (100 GeV-100 TeV) gamma-ray emission from M87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intra-cluster medium, and allow us to investigate the role of the cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. H.E.S.S. telescopes are sensitive to VHE gamma rays and have been utilized to observe M87 since 2004. We utilized a Bayesian block analysis to identify M87 emission states with H.E.S.S. observations from 2004 until 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended ($\gtrsim$kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120h low state data and found no significant gamma-ray extension. Therefore, we derived for the low state an upper limit of 58"(corresponding to $\approx$4.6kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at 99.7% confidence level. Our results exclude the radio lobes ($\approx$30 kpc) as the principal component of the VHE gamma-ray emission from the low state of M87. The gamma-ray emission is compatible with a single emission region at the radio core of M87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio $X_{{CR,max.}}$$\lesssim$$0.32$ and the total energy in cosmic-ray protons (CRp) to $U_{CR}$$\lesssim$5$\times10^{58}$ erg in the inner 20kpc of the Virgo Cluster for an assumed CRp power-law distribution in momentum with spectral index $\alpha_{p}$=2.1.<br />Comment: 15 pages, 7 figures. Accepted for publication in A&A. Corresponding authors: Victor Barbosa Martins, Stefan Ohm, Cornelia Arcaro, Natalia \.Zywucka, Mathieu de Naurois
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1405312790
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1051.0004-6361.202346056