Back to Search
Start Over
Mesoscopic Physics of Quantum Systems and Neural Networks
- Publication Year :
- 2023
-
Abstract
- We study three different kinds of mesoscopic systems – in the intermediate region between macroscopic and microscopic scales consisting of many interacting constituents: We consider particle entanglement in one-dimensional chains of interacting fermions. By employing a field theoretical bosonization calculation, we obtain the one-particle entanglement entropy in the ground state and its time evolution after an interaction quantum quench which causes relaxation towards non-equilibrium steady states. By pushing the boundaries of the numerical exact diagonalization and density matrix renormalization group computations, we are able to accurately scale to the thermodynamic limit where we make contact to the analytic field theory model. This allows to fix an interaction cutoff required in the continuum bosonization calculation to account for the short range interaction of the lattice model, such that the bosonization result provides accurate predictions for the one-body reduced density matrix in the Luttinger liquid phase. Establishing a better understanding of how to control entanglement in mesoscopic systems is also crucial for building qubits for a quantum computer. We further study a popular scalable qubit architecture that is based on Majorana zero modes in topological superconductors. The two major challenges with realizing Majorana qubits currently lie in trivial pseudo-Majorana states that mimic signatures of the topological bound states and in strong disorder in the proposed topological hybrid systems that destroys the topological phase. We study coherent transport through interferometers with a Majorana wire embedded into one arm. By combining analytical and numerical considerations, we explain the occurrence of an amplitude maximum as a function of the Zeeman field at the onset of the topological phase – a signature unique to MZMs – which has recently been measured experimentally [Whiticar et al., Nature Communications, 11(1):3212, 2020]. By placing an array of
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1402193459
- Document Type :
- Electronic Resource