Back to Search Start Over

Konzeption einer qualitätsgesicherten Implementierung eines Echtzeitassistenzsystems basierend auf einem terrestrischen Long Range Laserscanner

Authors :
Benndorf, Jörg
Holst, Christoph
Klonowski, Jörg
Technische Universität Bergakademie Freiberg
Czerwonka-Schröder, Daniel
Benndorf, Jörg
Holst, Christoph
Klonowski, Jörg
Technische Universität Bergakademie Freiberg
Czerwonka-Schröder, Daniel
Publication Year :
2023

Abstract

Sich verändernde Rahmenbedingungen des Klimawandels haben einen erheblichen Einfluss auf die Gestaltung der Erdoberfläche. Der Sachverhalt ist anhand unterschiedlicher geomorphologischer Veränderungsprozesse zu beobachten, sei es bei gravitativen Naturgefahren (Felsstürze, Hangrutschungen oder Murereignissen), der Gletscherschmelze in Hochgebirgsregionen oder der Änderungen der Küstendynamik an Sandstränden. Derartige Ereignisse werden durch immer stärker ausgeprägte, extreme Wetterbedingungen verursacht. In diesem Zusammenhang sind präventive Maßnahmen und der Schutz der Bevölkerung im Zuge eines Risikomanagements essentiell. Um mit diesen Gefahren sicher umgehen zu können, sind qualitativ hochwertige drei- und vierdimensionale (3D und 4D) Datensätze der Erdoberfläche erforderlich. Der technische Fortschritt in der Messtechnik und damit verbunden ein Paradigmenwechsel haben die Möglichkeiten in der Erfassung von räumlich als auch zeitlich verdichteten Daten erheblich verbessert. Die Weiterentwicklung von terrestrischen Laserscannern hin zu kommunikationsfähigen, programmierbaren Multisensorsystemen, eine kompakte und robuste Bauweise, hohe Messreichweiten sowie wirtschaftlich attraktive Systeme lassen einen Übergang zu permanentem terrestrischen Laserscanning (PLS) zu. Im Sinne eines adaptiven Monitorings ist PLS für die Integration in echtzeitnahe Assistenz- oder Frühwarnsysteme prädestiniert. Um die Akzeptanz eines solchen Systems zu erreichen sind jedoch transparente, nachvollziehbare Methoden und Prozesse zur Informationsgewinnung und -aufbereitung zu definieren. Ziel dieser Arbeit ist es, PLS als Methode systematisch aufzuarbeiten. Vier wesentliche Schritte entlang der Prozesskette werden identifiziert: (i) Die Datenerfassung einer einzelnen Epoche, (ii) die Bereitstellung eines redundanten Datenmanagements sowie einer sicheren Datenkommunikation zu zentralen Servern, (iii) die multitemporale Datenanalyse und (iv) die Aufbereitung, das Reporting und die Präsen<br />Climate change has an important impact on the scale and frequency with which the Earths surface is changing. This can be seen in various geomorphological change processes, such as gravitational natural hazards (rockfalls, landslides or debris flows), glacier melt in high mountain regions or the quantification of coastal dynamics on sandy beaches. Such events are triggered by increasingly prominent and extreme meteorological conditions. In this context, it is essential to implement preventive measures to protect the population as part of a risk management system. To safely manage these hazards, high quality three- and four-dimensional (3D and 4D) data sets of the Earth’s surface are required. Technological advances in metrology and the associated paradigm shift have significantly improved the ability to collect spatially and temporally distributed data. Progress from terrestrial laser scanners to communication-enabled, programmable multisensor systems, compact and robust design, long range and economically competitive systems allow a transition to a permanent laser scanning (PLS). PLS enables the acquisition of data from a fixed position to a target area kilometers away at high frequency and over a long period of time. In terms of adaptive monitoring, PLS is suitable for integration into near realtime assistance or early warning systems. However, in order to achieve acceptance of these systems, transparent, reproducible methods and processes for extracting information must be defined. The aim of this thesis is to present a methodological framework for PLS. Four crucial steps along the processing chain are identifiable: (i) collecting single epoch data, (ii) providing redundant data management and secure data communication to central servers, (iii) multi-temporal data analysis and (iv) reporting and presenting results to stakeholders. Two main research topics emerge from this processing chain. First, the qualitative assessment of the acquired point clouds, which focus

Details

Database :
OAIster
Notes :
German
Publication Type :
Electronic Resource
Accession number :
edsoai.on1402193161
Document Type :
Electronic Resource