Back to Search Start Over

The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18

Authors :
Hannaford, Jamie
Mackay, Jonathan D.
Ascott, Matthew
Bell, Victoria A.
Chitson, Thomas
Cole, Steven
Counsell, Christian
Durant, Mason
Jackson, Christopher R.
Kay, Alison L.
Lane, Rosanna A.
Mansour, Majdi
Moore, Robert
Parry, Simon
Rudd, Alison C.
Simpson, Michael
Facer-Childs, Katie
Turner, Stephen
Wallbank, John R.
Wells, Steven
Wilcox, Amy
Hannaford, Jamie
Mackay, Jonathan D.
Ascott, Matthew
Bell, Victoria A.
Chitson, Thomas
Cole, Steven
Counsell, Christian
Durant, Mason
Jackson, Christopher R.
Kay, Alison L.
Lane, Rosanna A.
Mansour, Majdi
Moore, Robert
Parry, Simon
Rudd, Alison C.
Simpson, Michael
Facer-Childs, Katie
Turner, Stephen
Wallbank, John R.
Wells, Steven
Wilcox, Amy
Publication Year :
2023

Abstract

This paper details the development and evaluation of the enhanced future FLows and Groundwater (eFLaG) dataset of nationally consistent hydrological projections for the UK, based on the latest UK Climate Projections (UKCP18). The projections are derived from a range of hydrological models. For river flows, multiple models (Grid-to-Grid, PDM (Probability Distributed Model) and GR (GeĢnie Rural; both four- and six-parameter versions, GR4J and GR6J)) are used to provide an indication of hydrological model uncertainty. For groundwater, two models are used, a groundwater level model (AquiMod) and a groundwater recharge model (ZOODRM: zooming object-oriented distributed-recharge model). A 12-member ensemble of transient projections of present and future (up to 2080) daily river flows, groundwater levels and groundwater recharge was produced using bias-corrected data from the UKCP18 regional (12 km) climate ensemble. Projections are provided for 200 river catchments, 54 groundwater level boreholes and 558 groundwater bodies, all sampling across the diverse hydrological and geological conditions of the UK. An evaluation was carried out to appraise the quality of hydrological model simulations against observations and also to appraise the reliability of hydrological models driven by the regional climate model (RCM) ensemble in terms of their capacity to reproduce hydrological regimes in the current period. The dataset was originally conceived as a prototype climate service for drought planning for the UK water sector and so has been developed with drought, low river flow and low groundwater level applications as the primary objectives. The evaluation metrics show that river flows and groundwater levels are, for the majority of catchments and boreholes, well simulated across the flow and level regime, meaning that the eFLaG dataset could be applied to a wider range of water resources research and management contexts, pending a full evaluation for the designated purpose. Only a

Details

Database :
OAIster
Notes :
text, Hannaford, Jamie and Mackay, Jonathan D. and Ascott, Matthew and Bell, Victoria A. and Chitson, Thomas and Cole, Steven and Counsell, Christian and Durant, Mason and Jackson, Christopher R. and Kay, Alison L. and Lane, Rosanna A. and Mansour, Majdi and Moore, Robert and Parry, Simon and Rudd, Alison C. and Simpson, Michael and Facer-Childs, Katie and Turner, Stephen and Wallbank, John R. and Wells, Steven and Wilcox, Amy (2023) The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18. Earth System Science Data, 15 (6). pp. 2391-2415. ISSN 1866-3516, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1401580297
Document Type :
Electronic Resource