Back to Search Start Over

Highly Ductile Cellulose-Rich Papers Obtained by Ultrasonication-Assisted Incorporation of Low Molecular Weight Plasticizers

Publication Year :
2023

Abstract

Ultrasonication was used as a mean toincorporate glycerolor urea, yielding paper films with a ductility of up to 35%. Fiber-based materials are attractive sustainable alternativestofossil-based plastics, however, the lack of ductility (i.e., brittleness)limits their applicability in complex shapes as are often utilizedfor plastics. In this study, we hypothesize that it is possible toenhance the ductility of a cellulose-rich material by the incorporationof low molecular weight plasticizers (glycerol, urea, citric acid,and tannic acid). However, no significant effects could be observedafter swelling in the presence of plasticizers. To enhance any potentialeffect, it was decided to employ ultrasonication to mechanically disintegratethe fiber and aid the sorption of plasticizer prior to formation ofsheets from the treated fibers. Glycerol or urea in combination withultrasonication resulted in both internal and external fibrillationof the fibers, and it could be observed that the resulting fines createa film at the surface of the fibers in the formed sheets. Tensiletesting shows that this gives rise to a 100% increase in ductilitycompared to sheets from untreated fibers. The use of citric or tannicacid has the opposite effect, reducing ductility to a third of thatof the reference sheet. This is suggested to be due to the formationof covalent cross-links in the treated fibers, which also leads todifferent internal and external fibrillation mechanisms, as observedby scanning electron microscopy. The exceptionally high improvementof the strain-at-break for sheets from the glycerol- and urea-treatedfibers suggests that low molecular weight plasticizers affect theinternal properties of the fiber wall as well as the interactionsbetween the fine material forming in-between the fibers. The findingsfrom the current study suggest that the proposed approach to obtainductile cellulose-rich materials holds promise for the future, butit is also clear that more in-depth research is req<br />QC 20230630

Details

Database :
OAIster
Notes :
Eliasson, Adrian, Hedenqvist, Mikael S., Brolin, Anders, Wågberg, Lars, Malmström, Eva
Publication Type :
Electronic Resource
Accession number :
edsoai.on1400070949
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1021.acssuschemeng.2c07583