Back to Search Start Over

Discovery of drug–omics associations in type 2 diabetes with generative deep-learning models

Authors :
Allesøe, Rosa Lundbye
Lundgaard, Agnete Troen
Hernández Medina, Ricardo
Aguayo-Orozco, Alejandro
Johansen, Joachim
Nissen, Jakob Nybo
Brorsson, Caroline
Mazzoni, Gianluca
Niu, Lili
Biel, Jorge Hernansanz
Brasas, Valentas
Webel, Henry
Benros, Michael Eriksen
Pedersen, Anders Gorm
Chmura, Piotr Jaroslaw
Jacobsen, Ulrik Plesner
Mari, Andrea
Koivula, Robert
Mahajan, Anubha
Vinuela, Ana
Tajes, Juan Fernandez
Sharma, Sapna
Haid, Mark
Hong, Mun-Gwan
Musholt, Petra B.
De Masi, Federico
Vogt, Josef
Pedersen, Helle Krogh
Gudmundsdottir, Valborg
Jones, Angus
Kennedy, Gwen
Bell, Jimmy
Thomas, E. Louise
Frost, Gary
Thomsen, Henrik
Hansen, Elizaveta
Hansen, Tue Haldor
Vestergaard, Henrik
Muilwijk, Mirthe
Blom, Marieke T.
‘t Hart, Leen M.
Pattou, Francois
Raverdy, Violeta
Brage, Soren
Kokkola, Tarja
Heggie, Alison
McEvoy, Donna
Mourby, Miranda
Kaye, Jane
Hattersley, Andrew
McDonald, Timothy
Ridderstråle, Martin
Walker, Mark
Forgie, Ian
Giordano, Giuseppe N.
Pavo, Imre
Ruetten, Hartmut
Pedersen, Oluf
Hansen, Torben
Dermitzakis, Emmanouil
Franks, Paul W.
Schwenk, Jochen M.
Adamski, Jerzy
McCarthy, Mark I.
Pearson, Ewan
Banasik, Karina
Rasmussen, Simon
Brunak, Søren
Froguel, Philippe
Thomas, Cecilia Engel
Häussler, Ragna S.
Beulens, Joline
Rutters, Femke
Nijpels, Giel
van Oort, Sabine
Groeneveld, Lenka
Elders, Petra
Giorgino, Toni
Rodriquez, Marianne
Nice, Rachel
Perry, Mandy
Bianzano, Susanna
Graefe-Mody, Ulrike
Hennige, Anita
Grempler, Rolf
Baum, Patrick
Stærfeldt, Hans Henrik
Shah, Nisha
Teare, Harriet
Ehrhardt, Beate
Tillner, Joachim
Dings, Christiane
Lehr, Thorsten
Scherer, Nina
Sihinevich, Iryna
Cabrelli, Louise
Loftus, Heather
Bizzotto, Roberto
Tura, Andrea
Dekkers, Koen
Allesøe, Rosa Lundbye
Lundgaard, Agnete Troen
Hernández Medina, Ricardo
Aguayo-Orozco, Alejandro
Johansen, Joachim
Nissen, Jakob Nybo
Brorsson, Caroline
Mazzoni, Gianluca
Niu, Lili
Biel, Jorge Hernansanz
Brasas, Valentas
Webel, Henry
Benros, Michael Eriksen
Pedersen, Anders Gorm
Chmura, Piotr Jaroslaw
Jacobsen, Ulrik Plesner
Mari, Andrea
Koivula, Robert
Mahajan, Anubha
Vinuela, Ana
Tajes, Juan Fernandez
Sharma, Sapna
Haid, Mark
Hong, Mun-Gwan
Musholt, Petra B.
De Masi, Federico
Vogt, Josef
Pedersen, Helle Krogh
Gudmundsdottir, Valborg
Jones, Angus
Kennedy, Gwen
Bell, Jimmy
Thomas, E. Louise
Frost, Gary
Thomsen, Henrik
Hansen, Elizaveta
Hansen, Tue Haldor
Vestergaard, Henrik
Muilwijk, Mirthe
Blom, Marieke T.
‘t Hart, Leen M.
Pattou, Francois
Raverdy, Violeta
Brage, Soren
Kokkola, Tarja
Heggie, Alison
McEvoy, Donna
Mourby, Miranda
Kaye, Jane
Hattersley, Andrew
McDonald, Timothy
Ridderstråle, Martin
Walker, Mark
Forgie, Ian
Giordano, Giuseppe N.
Pavo, Imre
Ruetten, Hartmut
Pedersen, Oluf
Hansen, Torben
Dermitzakis, Emmanouil
Franks, Paul W.
Schwenk, Jochen M.
Adamski, Jerzy
McCarthy, Mark I.
Pearson, Ewan
Banasik, Karina
Rasmussen, Simon
Brunak, Søren
Froguel, Philippe
Thomas, Cecilia Engel
Häussler, Ragna S.
Beulens, Joline
Rutters, Femke
Nijpels, Giel
van Oort, Sabine
Groeneveld, Lenka
Elders, Petra
Giorgino, Toni
Rodriquez, Marianne
Nice, Rachel
Perry, Mandy
Bianzano, Susanna
Graefe-Mody, Ulrike
Hennige, Anita
Grempler, Rolf
Baum, Patrick
Stærfeldt, Hans Henrik
Shah, Nisha
Teare, Harriet
Ehrhardt, Beate
Tillner, Joachim
Dings, Christiane
Lehr, Thorsten
Scherer, Nina
Sihinevich, Iryna
Cabrelli, Louise
Loftus, Heather
Bizzotto, Roberto
Tura, Andrea
Dekkers, Koen
Publication Year :
2023

Abstract

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug–omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug–drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.<br />Correction in DOI 10.1038/s41587-023-01805-9QC 20230626

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1400070820
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s41587-022-01520-x