Back to Search
Start Over
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT
- Source :
- Andrearczyk, Vincent; Oreiller, Valentin; Abobakr, Moamen; Akhavanallaf, Azadeh; Balermpas, Panagiotis; Boughdad, Sarah; Capriotti, Leo; Castelli, Joel; Cheze Le Rest, Catherine; Decazes, Pierre; Correia, Ricardo; El-Habashy, Dina; Elhalawani, Hesham; Fuller, Clifton D; Jreige, Mario; Khamis, Yornna; La Greca, Agustina; Mohamed, Abdallah; Naser, Mohamed; Prior, John O; Ruan, Su; Tanadini-Lang, Stephanie; Tankyevych, Olena; Salimi, Yazdan; Vallières, Martin; Vera, Pierre; Visvikis, Dimitris; Wahid, Kareem; Zaidi, Habib; Hatt, Mathieu; Depeursinge, Adrien (2023). Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT. In: Andrearczyk, Vincent; Oreiller, Valentin; Hatt, Mathieu; Depeursinge, Adrien. Head and Neck Tumor Segmentation and Outcome Prediction : Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings. Cham: Springer, 1-30.
- Publication Year :
- 2023
-
Abstract
- This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSC$_{agg}$) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.
Details
- Database :
- OAIster
- Journal :
- Andrearczyk, Vincent; Oreiller, Valentin; Abobakr, Moamen; Akhavanallaf, Azadeh; Balermpas, Panagiotis; Boughdad, Sarah; Capriotti, Leo; Castelli, Joel; Cheze Le Rest, Catherine; Decazes, Pierre; Correia, Ricardo; El-Habashy, Dina; Elhalawani, Hesham; Fuller, Clifton D; Jreige, Mario; Khamis, Yornna; La Greca, Agustina; Mohamed, Abdallah; Naser, Mohamed; Prior, John O; Ruan, Su; Tanadini-Lang, Stephanie; Tankyevych, Olena; Salimi, Yazdan; Vallières, Martin; Vera, Pierre; Visvikis, Dimitris; Wahid, Kareem; Zaidi, Habib; Hatt, Mathieu; Depeursinge, Adrien (2023). Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT. In: Andrearczyk, Vincent; Oreiller, Valentin; Hatt, Mathieu; Depeursinge, Adrien. Head and Neck Tumor Segmentation and Outcome Prediction : Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings. Cham: Springer, 1-30.
- Notes :
- application/pdf, English, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1398327433
- Document Type :
- Electronic Resource