Back to Search Start Over

Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2

Authors :
de Maio, Nicola
Walker, Conor R.
Turakhia, Yatish
Lanfear, Robert
Corbett-Detig, Russell
Goldman, Nick
de Maio, Nicola
Walker, Conor R.
Turakhia, Yatish
Lanfear, Robert
Corbett-Detig, Russell
Goldman, Nick
Source :
Genome Biology and Evolution
Publication Year :
2021

Abstract

The COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G →U and C →U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. Although previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.

Details

Database :
OAIster
Journal :
Genome Biology and Evolution
Notes :
en_AU
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397766198
Document Type :
Electronic Resource