Back to Search Start Over

Solvent-cast direct-writing and electrospinning as a dual fabrication strategy for drug-eluting polymeric bioresorbable stents

Authors :
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Institut de Recerca Sant Joan de Déu
Universitat de Girona
Institut de Bioenginyeria de Catalunya
Chausse Calbet, Victor
Casanova Batlle, Enric
Canal Barnils, Cristina
Ginebra Molins, Maria Pau
Ciurana Gay, Joaquim
Pegueroles Neyra, Marta
Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
Universitat Politècnica de Catalunya. BBT - Grup de recerca en Biomaterials, Biomecànica i Enginyeria de Teixits
Institut de Recerca Sant Joan de Déu
Universitat de Girona
Institut de Bioenginyeria de Catalunya
Chausse Calbet, Victor
Casanova Batlle, Enric
Canal Barnils, Cristina
Ginebra Molins, Maria Pau
Ciurana Gay, Joaquim
Pegueroles Neyra, Marta
Publication Year :
2023

Abstract

Bioresorbable stents (BRS) are conceived to retain sufficient radial strength after implantation while releasing an antiproliferative drug in order to prevent vessel restenosis until complete resorption. Ongoing research trends involve the use of innovative manufacturing techniques to achieve thinner struts combined with optimized local drug delivery. This work presents a combination of solvent-cast direct-writing (SC-DW) and electrospinning (ES) using poly-l-lactic acid (PLLA) and poly(l-lactic-co-¿-caprolactone) (PLCL) as a new approach to generate everolimus-eluting BRS for cardiovascular applications. A Design of Experiment (DoE) was conducted to determine the optimal parameters to obtain a homogeneous coating with high specific surface. Manufactured stents were characterized by means of mechanical tests and scanning electron microscopy (SEM), with everolimus release in accelerated conditions quantified through High Performance Liquid Chromatography (HPLC). Drug loading was achieved either encapsulated in the struts of the stent or in an electrospun PLCL membrane covering the stent. In the former case, everolimus release was found to be insufficient, less than 3% of total drug loading after 8 weeks. In the latter, everolimus release considerably increased with respect to drug-loaded 3D-printed stents, with over 50% release in the first 6 hours of the test. In conclusion, everolimus release from PLCL-coated 3D-printed stents would match the dose and timeframe required for in vivo applications, while providing thinner struts than SC-DW drug-loaded stents.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397548392
Document Type :
Electronic Resource