Back to Search Start Over

Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

Authors :
Jenny, Lee
Max, Westphal
Yasaman, Vali
Jerome, Boursier
Salvatorre, Petta
Rachel, Ostroff
Leigh, Alexander
Yu, Chen
Celine, Fournier
Andreas, Geier
Sven, Francque
Kristy, Wonder
Dina, Tiniako
Pierre, Bedossa
Mike, Allison
Georgios, Papatheodoridi
Helena, Cortez-Pinto
Raluca, Pai
Jean-Francois, Dufour
Diana Julie, Leeming
Stephen, Harrison
Jeremy, Cobbold
Adriaan G, Holleboom
Hannele, Yki-Järvinen
Javier, Crespo
Mattias, Ekstedt
Guruprasad P, Aithal
Elisabetta, Bugianesi
Manuel, Romero-Gomez
Richard, Torstenson
Morten, Karsdal
Carla, Yuni
Jörn M, Schattenberg
Detlef, Schuppan
Vlad, Ratziu
Clifford, Bra
Kevin, Duffin
Koos, Zwinderman
Michael, Pavlide
Quentin M, Anstee
Patrick M, Bossuyt
Anstee, Quentin M.
Daly, Ann K.
Govaere, Olivier
Cockell, Simon
Tiniakos, Dina
Bedossa, Pierre
Burt, Alastair
Oakley, Fiona
Cordell, Heather J.
Day, Christopher P.
Wonders, Kristy
Missier, Paolo
Mcteer, Matthew
Vale, Luke
Oluboyede, Yemi
Breckons, Matt
Bossuyt, Patrick M.
Zafarmand, Hadi
Vali, Yasaman
Lee, Jenny
Nieuwdorp, Max
Holleboom, Adriaan G.
Verheij, Joanne
Ratziu, Vlad
Clément, Karine
Patino-Navarrete, Rafael
Pais, Raluca
Paradis, Valerie
Schuppan, Detlef
Schattenberg, Jörn M.
Surabattula, Rambabu
Myneni, Sudha
Straub, Beate K.
Vidal-Puig, Toni
Vacca, Michele
Rodrigues-Cuenca, Sergio
Allison, Mike
Kamzolas, Ioanni
Petsalaki, Evangelia
Campbell, Mark
Lelliott, Chris J.
Davies, Susan
Orešič, Matej
Hyötyläinen, Tuulia
Mcglinchey, Aiden
Mato, Jose M.
Millet, Óscar
Dufour, Jean-Françoi
Berzigotti, Annalisa
Masoodi, Mojgan
Pavlides, Michael
Harrison, Stephen
Neubauer, Stefan
Cobbold, Jeremy
Mozes, Ferenc
Akhtar, Salma
Olodo-Atitebi, Seliat
Banerjee, Rajarshi
Kelly, Matt
Shumbayawonda, Elizabeth
Dennis, Andrea
Andersson, Anneli
Wigley, Ioan
Romero-Gómez, Manuel
Gómez-González, Emilio
Ampuero, Javier
Castell, Javier
Gallego-Durán, Rocío
Fernández, Isabel
Montero-Vallejo, Rocío
Karsdal, Morten
Guldager Kring Rasmussen, Daniel
Leeming, Diana Julie
Sinisi, Antonia
Musa, Kishwar
Sandt, Estelle
Tonini, Manuela
Bugianesi, Elisabetta
Rosso, Chiara
Armandi, Angelo
Marra, Fabio
Gastaldelli, Amalia
Svegliati, Gianluca
Boursier, Jérôme
Francque, Sven
Vonghia, Luisa
Driessen, Ann
Ekstedt, Mattia
Kechagias, Stergio
Yki-Järvinen, Hannele
Porthan, Kimmo
Arola, Johanna
van Mil, Saskia
Papatheodoridis, George
Cortez-Pinto, Helena
Rodrigues, Cecilia M. P.
Valenti, Luca
Pelusi, Serena
Petta, Salvatore
Pennisi, Grazia
Miele, Luca
Geier, Andrea
Trautwein, Christian
Aithal, Guruprasad P.
Francis, Susan
Hockings, Paul
Schneider, Moritz
Newsome, Philip
Hübscher, Stefan
Wenn, David
Rosenquist, Christian
Trylesinski, Aldo
Mayo, Rebeca
Alonso, Cristina
Duffin, Kevin
Perfield, James W.
Chen, Yu
Yunis, Carla
Tuthill, Theresa
Harrington, Magdalena Alicia
Miller, Melissa
Chen, Yan
Mcleod, Euan Jame
Ross, Trenton
Bernardo, Barbara
Schölch, Corinna
Ertle, Judith
Younes, Ramy
Oldenburger, Anouk
Ostroff, Rachel
Alexander, Leigh
Biegel, Hannah
Skalshøi Kjær, Mette
Mørch Harder, Lea
Davidsen, Peter
Mikkelsen, Lars Frii
Balp, Maria-Magdalena
Brass, Clifford
Jennings, Lori
Martic, Miljen
Löffler, Jürgen
Applegate, Dougla
Shankar, Sudha
Torstenson, Richard
Fournier-Poizat, Céline
Llorca, Anne
Kalutkiewicz, Michael
Pepin, Kay
Ehman, Richard
Horan, Gerald
Ho, Gideon
Tai, Dean
Chng, Elaine
Patterson, Scott D.
Billin, Andrew
Doward, Lynda
Twiss, Jame
Thakker, Paresh
Landgren, Henrik
Lackner, Carolin
Gouw, Annette
Hytiroglou, Prodromos
Luca, Miele (ORCID:0000-0003-3464-0068)
Jenny, Lee
Max, Westphal
Yasaman, Vali
Jerome, Boursier
Salvatorre, Petta
Rachel, Ostroff
Leigh, Alexander
Yu, Chen
Celine, Fournier
Andreas, Geier
Sven, Francque
Kristy, Wonder
Dina, Tiniako
Pierre, Bedossa
Mike, Allison
Georgios, Papatheodoridi
Helena, Cortez-Pinto
Raluca, Pai
Jean-Francois, Dufour
Diana Julie, Leeming
Stephen, Harrison
Jeremy, Cobbold
Adriaan G, Holleboom
Hannele, Yki-Järvinen
Javier, Crespo
Mattias, Ekstedt
Guruprasad P, Aithal
Elisabetta, Bugianesi
Manuel, Romero-Gomez
Richard, Torstenson
Morten, Karsdal
Carla, Yuni
Jörn M, Schattenberg
Detlef, Schuppan
Vlad, Ratziu
Clifford, Bra
Kevin, Duffin
Koos, Zwinderman
Michael, Pavlide
Quentin M, Anstee
Patrick M, Bossuyt
Anstee, Quentin M.
Daly, Ann K.
Govaere, Olivier
Cockell, Simon
Tiniakos, Dina
Bedossa, Pierre
Burt, Alastair
Oakley, Fiona
Cordell, Heather J.
Day, Christopher P.
Wonders, Kristy
Missier, Paolo
Mcteer, Matthew
Vale, Luke
Oluboyede, Yemi
Breckons, Matt
Bossuyt, Patrick M.
Zafarmand, Hadi
Vali, Yasaman
Lee, Jenny
Nieuwdorp, Max
Holleboom, Adriaan G.
Verheij, Joanne
Ratziu, Vlad
Clément, Karine
Patino-Navarrete, Rafael
Pais, Raluca
Paradis, Valerie
Schuppan, Detlef
Schattenberg, Jörn M.
Surabattula, Rambabu
Myneni, Sudha
Straub, Beate K.
Vidal-Puig, Toni
Vacca, Michele
Rodrigues-Cuenca, Sergio
Allison, Mike
Kamzolas, Ioanni
Petsalaki, Evangelia
Campbell, Mark
Lelliott, Chris J.
Davies, Susan
Orešič, Matej
Hyötyläinen, Tuulia
Mcglinchey, Aiden
Mato, Jose M.
Millet, Óscar
Dufour, Jean-Françoi
Berzigotti, Annalisa
Masoodi, Mojgan
Pavlides, Michael
Harrison, Stephen
Neubauer, Stefan
Cobbold, Jeremy
Mozes, Ferenc
Akhtar, Salma
Olodo-Atitebi, Seliat
Banerjee, Rajarshi
Kelly, Matt
Shumbayawonda, Elizabeth
Dennis, Andrea
Andersson, Anneli
Wigley, Ioan
Romero-Gómez, Manuel
Gómez-González, Emilio
Ampuero, Javier
Castell, Javier
Gallego-Durán, Rocío
Fernández, Isabel
Montero-Vallejo, Rocío
Karsdal, Morten
Guldager Kring Rasmussen, Daniel
Leeming, Diana Julie
Sinisi, Antonia
Musa, Kishwar
Sandt, Estelle
Tonini, Manuela
Bugianesi, Elisabetta
Rosso, Chiara
Armandi, Angelo
Marra, Fabio
Gastaldelli, Amalia
Svegliati, Gianluca
Boursier, Jérôme
Francque, Sven
Vonghia, Luisa
Driessen, Ann
Ekstedt, Mattia
Kechagias, Stergio
Yki-Järvinen, Hannele
Porthan, Kimmo
Arola, Johanna
van Mil, Saskia
Papatheodoridis, George
Cortez-Pinto, Helena
Rodrigues, Cecilia M. P.
Valenti, Luca
Pelusi, Serena
Petta, Salvatore
Pennisi, Grazia
Miele, Luca
Geier, Andrea
Trautwein, Christian
Aithal, Guruprasad P.
Francis, Susan
Hockings, Paul
Schneider, Moritz
Newsome, Philip
Hübscher, Stefan
Wenn, David
Rosenquist, Christian
Trylesinski, Aldo
Mayo, Rebeca
Alonso, Cristina
Duffin, Kevin
Perfield, James W.
Chen, Yu
Yunis, Carla
Tuthill, Theresa
Harrington, Magdalena Alicia
Miller, Melissa
Chen, Yan
Mcleod, Euan Jame
Ross, Trenton
Bernardo, Barbara
Schölch, Corinna
Ertle, Judith
Younes, Ramy
Oldenburger, Anouk
Ostroff, Rachel
Alexander, Leigh
Biegel, Hannah
Skalshøi Kjær, Mette
Mørch Harder, Lea
Davidsen, Peter
Mikkelsen, Lars Frii
Balp, Maria-Magdalena
Brass, Clifford
Jennings, Lori
Martic, Miljen
Löffler, Jürgen
Applegate, Dougla
Shankar, Sudha
Torstenson, Richard
Fournier-Poizat, Céline
Llorca, Anne
Kalutkiewicz, Michael
Pepin, Kay
Ehman, Richard
Horan, Gerald
Ho, Gideon
Tai, Dean
Chng, Elaine
Patterson, Scott D.
Billin, Andrew
Doward, Lynda
Twiss, Jame
Thakker, Paresh
Landgren, Henrik
Lackner, Carolin
Gouw, Annette
Hytiroglou, Prodromos
Luca, Miele (ORCID:0000-0003-3464-0068)
Publication Year :
2023

Abstract

Background and aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397544909
Document Type :
Electronic Resource