Back to Search Start Over

Singular contact geometry and celestial mechanics

Authors :
Universitat Politècnica de Catalunya. Departament de Matemàtiques
University of Toronto
Miranda Galcerán, Eva
Fontana McNally, Josep
Universitat Politècnica de Catalunya. Departament de Matemàtiques
University of Toronto
Miranda Galcerán, Eva
Fontana McNally, Josep
Publication Year :
2023

Abstract

En aquest treball de fi de grau, investiguem la teoria de formes simplèctiques i de contacte singulars introduïdes per Guillemin-Miranda-Pires [GMP14] i Nest-Tsygan [NT96], a més de les connexions entre la geometria de contacte i la dinàmica de fluids. L'objectiu és explorar les possibles aplicacions d'aquestes idees a la dinàmica celeste. Comencem examinant nous aspectes del mirall Reeb-Beltrami donat per Etnyre i Ghrist [EG00a], conduint a una versió equivariant d'aquesta correspondència i desvetllant una interpretació de diversos sistemes mecànics Hamiltonians com a fluxos de fluids estacionaris. Destaquem especialment el problema d'N cossos en la mecànica celeste, i en particular el problema de Kepler. Utilitzant les tècniques singulars desenvolupades en aquest treball, també donem fites inferiors per al nombre d'òrbites d'escapament en sistemes dinàmics associats a les formes singulars que apareixen en la mecànica celeste. Aquest treball de fi de grau culmina amb un contraexemple a la conjectura singular de Weinstein sobre l'existència d'òrbites periòdiques singulars formulada per Miranda-Oms a [MO21].<br />In this undergraduate thesis, we delve into the theory of singular symplectic and contact forms originally introduced by Guillemin-Miranda-Pires [GMP14] and Nest-Tsygan [NT96], as well as the connections between contact geometry and fluid dynamics. Our objective is to explore the potential applications of these ideas in the field of celestial mechanics. Our thesis begins by examining novel aspects of the Reeb-Beltrami mirror given by Etnyre and Ghrist [EG00a], leading to an equivariant version of this correspondence and unveiling an interpretation of various mechanical Hamiltonian systems as stationary fluid flows. Notably, we focus on different incarnations of the n-body problem of celestial mechanics, particularly the Kepler problem. By utilizing the singular techniques developed in this thesis, we also provide lower bounds for escape orbits in dynamical systems associated with the singular forms that appear in celestial mechanics. This undergraduate thesis culminates with a counterexample to the singular Weinstein conjecture regarding the existence of singular periodic orbits formulated by Miranda-Oms in [MO21].<br />Outgoing

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397544876
Document Type :
Electronic Resource