Back to Search Start Over

Multi-substrate Metabolic Tracing Reveals Marked Heterogeneity and Dependency on Fatty Acid Metabolism in Human Prostate Cancer

Authors :
Fidelito, G
De Souza, DP
Niranjan, B
De Nardo, W
Keerthikumar, S
Brown, K
Taylor, RA
Watt, MJ
Fidelito, G
De Souza, DP
Niranjan, B
De Nardo, W
Keerthikumar, S
Brown, K
Taylor, RA
Watt, MJ
Publication Year :
2023

Abstract

UNLABELLED: Cancer cells undergo metabolic reprogramming to meet increased bioenergetic demands. Studies in cells and mice have highlighted the importance of oxidative metabolism and lipogenesis in prostate cancer; however, the metabolic landscape of human prostate cancer remains unclear. To address this knowledge gap, we performed radiometric (14C) and stable (13C) isotope tracing assays in precision-cut slices of patient-derived xenografts (PDX). Glucose, glutamine, and fatty acid oxidation was variably upregulated in malignant PDXs compared with benign PDXs. De novo lipogenesis (DNL) and storage of free fatty acids into phospholipids and triacylglycerols were increased in malignant PDXs. There was no difference in substrate utilization between localized and metastatic PDXs and hierarchical clustering revealed marked metabolic heterogeneity across all PDXs. Mechanistically, glucose utilization was mediated by acetyl-CoA production rather than carboxylation of pyruvate, while glutamine entered the tricarboxylic acid cycle through transaminase reactions before being utilized via oxidative or reductive pathways. Blocking fatty acid uptake or fatty acid oxidation with pharmacologic inhibitors was sufficient to reduce cell viability in PDX-derived organoids, whereas blockade of DNL, or glucose or glutamine oxidation induced variable and limited therapeutic efficacy. These findings demonstrate that human prostate cancer, irrespective of disease stage, can effectively utilize all metabolic substrates, albeit with marked heterogeneity across tumors. We also confirm that fatty acid uptake and oxidation are targetable metabolic dependencies in human prostate cancer. IMPLICATIONS: Prostate cancer utilizes multiple substrates to fuel energy requirements, yet pharmacologic targeting of fatty acid uptake and oxidation reveals metabolic dependencies in localized and metastatic tumors.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397540770
Document Type :
Electronic Resource