Back to Search Start Over

Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia

Authors :
Nielsen, Rikke L.
Wolthers, Benjamin O.
Helenius, Marianne
Albertsen, Birgitte K.
Clemmensen, Line
Nielsen, Kasper
Kanerva, Jukka
Niinimäki, Riitta
Frandsen, Thomas L.
Attarbaschi, Andishe
Barzilai, Shlomit
Colombini, Antonella
Escherich, Gabriele
Aytan-Aktug, Derya
Liu, Hsi Che
Möricke, Anja
Samarasinghe, Sujith
Van Der Sluis, Inge M.
Stanulla, Martin
Tulstrup, Morten
Yadav, Rachita
Zapotocka, Ester
Schmiegelow, Kjeld
Gupta, Ramneek
Nielsen, Rikke L.
Wolthers, Benjamin O.
Helenius, Marianne
Albertsen, Birgitte K.
Clemmensen, Line
Nielsen, Kasper
Kanerva, Jukka
Niinimäki, Riitta
Frandsen, Thomas L.
Attarbaschi, Andishe
Barzilai, Shlomit
Colombini, Antonella
Escherich, Gabriele
Aytan-Aktug, Derya
Liu, Hsi Che
Möricke, Anja
Samarasinghe, Sujith
Van Der Sluis, Inge M.
Stanulla, Martin
Tulstrup, Morten
Yadav, Rachita
Zapotocka, Ester
Schmiegelow, Kjeld
Gupta, Ramneek
Source :
Nielsen , R L , Wolthers , B O , Helenius , M , Albertsen , B K , Clemmensen , L , Nielsen , K , Kanerva , J , Niinimäki , R , Frandsen , T L , Attarbaschi , A , Barzilai , S , Colombini , A , Escherich , G , Aytan-Aktug , D , Liu , H C , Möricke , A , Samarasinghe , S , Van Der Sluis , I M , Stanulla , M , Tulstrup , M , Yadav , R , Zapotocka , E , Schmiegelow , K & Gupta , R 2022 , ' Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia ' , Journal of Pediatric Hematology/Oncology , vol. 44 , no. 3 , pp. e628-e636 .
Publication Year :
2022

Abstract

Asparaginase-associated pancreatitis (AAP) frequently affects children treated for acute lymphoblastic leukemia (ALL) causing severe acute and persisting complications. Known risk factors such as asparaginase dosing, older age and single nucleotide polymorphisms (SNPs) have insufficient odds ratios to allow personalized asparaginase therapy. In this study, we explored machine learning strategies for prediction of individual AAP risk. We integrated information on age, sex, and SNPs based on Illumina Omni2.5exome-8 arrays of patients with childhood ALL (N=1564, 244 with AAP aged 1.0 to 17.9 y) from 10 international ALL consortia into machine learning models including regression, random forest, AdaBoost and artificial neural networks. A model with only age and sex had area under the receiver operating characteristic curve (ROC-AUC) of 0.62. Inclusion of 6 pancreatitis candidate gene SNPs or 4 validated pancreatitis SNPs boosted ROC-AUC somewhat (0.67) while 30 SNPs, identified through our AAP genome-wide association study cohort, boosted performance (0.80). Most predictive features included rs10273639 (PRSS1-PRSS2), rs10436957 (CTRC), rs13228878 (PRSS1/PRSS2), rs1505495 (GALNTL6), rs4655107 (EPHB2) and age (1 to 7 y). Second AAP following asparaginase re-exposure was predicted with ROC-AUC: 0.65. The machine learning models assist individual-level risk assessment of AAP for future prevention trials, and may legitimize asparaginase re-exposure when AAP risk is predicted to be low.

Details

Database :
OAIster
Journal :
Nielsen , R L , Wolthers , B O , Helenius , M , Albertsen , B K , Clemmensen , L , Nielsen , K , Kanerva , J , Niinimäki , R , Frandsen , T L , Attarbaschi , A , Barzilai , S , Colombini , A , Escherich , G , Aytan-Aktug , D , Liu , H C , Möricke , A , Samarasinghe , S , Van Der Sluis , I M , Stanulla , M , Tulstrup , M , Yadav , R , Zapotocka , E , Schmiegelow , K & Gupta , R 2022 , ' Can Machine Learning Models Predict Asparaginase-associated Pancreatitis in Childhood Acute Lymphoblastic Leukemia ' , Journal of Pediatric Hematology/Oncology , vol. 44 , no. 3 , pp. e628-e636 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1397305384
Document Type :
Electronic Resource