Back to Search Start Over

MasakhaNEWS:News Topic Classification for African languages

Authors :
Adelani, David Ifeoluwa
Chukwuneke, Chiamaka I.
Masiak, Marek
Azime, Israel Abebe
Alabi, Jesujoba Oluwadara
Tonja, Atnafu Lambebo
Mwase, Christine
Ogundepo, Odunayo
Dossou, Bonaventure F. P.
Oladipo, Akintunde
Nixdorf, Doreen
Emezue, Chris Chinenye
al-azzawi, Sana Sabah
Sibanda, Blessing K.
David, Davis
Ndolela, Lolwethu
Mukiibi, Jonathan
Ajayi, Tunde Oluwaseyi
Ngoli, Tatiana Moteu
Odhiambo, Brian
Mbonu, Chinedu E.
Owodunni, Abraham Toluwase
Obiefuna, Nnaemeka C.
Muhammad, Shamsuddeen Hassan
Abdullahi, Saheed Salahudeen
Yigezu, Mesay Gemeda
Gwadabe, Tajuddeen
Abdulmumin, Idris
Bame, Mahlet Taye
Awoyomi, Oluwabusayo Olufunke
Shode, Iyanuoluwa
Adelani, Tolulope Anu
Kailani, Habiba Abdulganiy
Omotayo, Abdul-Hakeem
Adeeko, Adetola
Abeeb, Afolabi
Aremu, Anuoluwapo
Samuel, Olanrewaju
Siro, Clemencia
Kimotho, Wangari
Ogbu, Onyekachi Raphael
Fanijo, Samuel
Ojo, Jessica
Awosan, Oyinkansola F.
Guge, Tadesse Kebede
Sari, Sakayo Toadoum
Nyatsine, Pamela
Sidume, Freedmore
Yousuf, Oreen
Oduwole, Mardiyyah
Kimanuka, Ussen
Tshinu, Kanda Patrick
Diko, Thina
Nxakama, Siyanda
Johar, Abdulmejid Tuni
Gebre, Sinodos
Mohamed, Muhidin
Mohamed, Shafie Abdi
Hassan, Fuad Mire
Mehamed, Moges Ahmed
Ngabire, Evrard
Stenetorp, Pontus
Adelani, David Ifeoluwa
Chukwuneke, Chiamaka I.
Masiak, Marek
Azime, Israel Abebe
Alabi, Jesujoba Oluwadara
Tonja, Atnafu Lambebo
Mwase, Christine
Ogundepo, Odunayo
Dossou, Bonaventure F. P.
Oladipo, Akintunde
Nixdorf, Doreen
Emezue, Chris Chinenye
al-azzawi, Sana Sabah
Sibanda, Blessing K.
David, Davis
Ndolela, Lolwethu
Mukiibi, Jonathan
Ajayi, Tunde Oluwaseyi
Ngoli, Tatiana Moteu
Odhiambo, Brian
Mbonu, Chinedu E.
Owodunni, Abraham Toluwase
Obiefuna, Nnaemeka C.
Muhammad, Shamsuddeen Hassan
Abdullahi, Saheed Salahudeen
Yigezu, Mesay Gemeda
Gwadabe, Tajuddeen
Abdulmumin, Idris
Bame, Mahlet Taye
Awoyomi, Oluwabusayo Olufunke
Shode, Iyanuoluwa
Adelani, Tolulope Anu
Kailani, Habiba Abdulganiy
Omotayo, Abdul-Hakeem
Adeeko, Adetola
Abeeb, Afolabi
Aremu, Anuoluwapo
Samuel, Olanrewaju
Siro, Clemencia
Kimotho, Wangari
Ogbu, Onyekachi Raphael
Fanijo, Samuel
Ojo, Jessica
Awosan, Oyinkansola F.
Guge, Tadesse Kebede
Sari, Sakayo Toadoum
Nyatsine, Pamela
Sidume, Freedmore
Yousuf, Oreen
Oduwole, Mardiyyah
Kimanuka, Ussen
Tshinu, Kanda Patrick
Diko, Thina
Nxakama, Siyanda
Johar, Abdulmejid Tuni
Gebre, Sinodos
Mohamed, Muhidin
Mohamed, Shafie Abdi
Hassan, Fuad Mire
Mehamed, Moges Ahmed
Ngabire, Evrard
Stenetorp, Pontus
Publication Year :
2023

Abstract

African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach.

Details

Database :
OAIster
Notes :
text, https://eprints.lancs.ac.uk/id/eprint/194287/1/2304.09972v1.pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1396681719
Document Type :
Electronic Resource