Back to Search
Start Over
Treading thin lines: delineating species boundaries in corals
- Publication Year :
- 2023
-
Abstract
- Delimiting species is not only a central issue in evolutionary and systematic biology but also a prerequisite to physiological, ecological, and population genetic studies. However, species boundaries' delineation in highly diverse environments, such as shallow tropical coral reefs, remains challenging. Traditional hypotheses that separate lineages in corals have long been based on morphological traits that did not yield resolution at the species level. The plastic response of corals to environmental variations and reports of intermediate morphotypes in the field have also hindered this task, casting doubt on current species delimitations. Therefore, while anthropogenic disturbances threaten coral reef ecosystems, the taxonomy of vulnerable taxa that inhabits them remains obscure.The difficulty to navigate this intricate taxonomic landscape is epitomized by the coral genus Acropora, which exhibits more than a hundred morphospecies and provides an excellent training ground to test and validate new practices. Species delimitation attempts in Acropora corals have so far been unsuccessful due to widespread genealogical incongruence among genetic markers and between morphological groupings, mating trials, and molecular clades obtained in phylogenetic analyses. Consequently, this thesis aimed to test the current species delimitation in scleractinian corals, outlining an integrative approach and establishing a methodology that paves the way for a taxonomic revision using the Acropora genus as a case study.For this purpose, a historical overview highlighting the emergence of the main issues faced by coral taxonomy was compiled (Chapter I). Molecular approaches were then applied to delimitate sympatric species of ecologically important and closely related tabular Acropora species. The congruence of the resulting molecular species delineation with additional lines of evidence, such as mating trials and morphology, was then gauged to select the most robust taxonomic hypothesis<br />Doctorat en Sciences<br />info:eu-repo/semantics/nonPublished
Details
- Database :
- OAIster
- Notes :
- 3 full-text file(s): application/pdf | application/pdf | application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1396184287
- Document Type :
- Electronic Resource