Back to Search Start Over

Ultrafast electron diffraction: Visualizing dynamic states of matter

Authors :
Filippetto, D.
Musumeci, P.
Li, R. K.
Siwick, B. J.
Otto, M. R.
Centurion, Martin
Nunes, J. P. F.
Filippetto, D.
Musumeci, P.
Li, R. K.
Siwick, B. J.
Otto, M. R.
Centurion, Martin
Nunes, J. P. F.
Source :
Department of Physics and Astronomy: Faculty Publications
Publication Year :
2022

Abstract

Since the discovery of electron-wave duality, electron scattering instrumentation has developed into a powerful array of techniques for revealing the atomic structure of matter. Beyond detecting local lattice variations in equilibrium structures with the highest possible spatial resolution, recent research efforts have been directed toward the long-sought-after dream of visualizing the dynamic evolution of matter in real time. The atomic behavior at ultrafast timescales carries critical information on phase transition and chemical reaction dynamics, the coupling of electronic and nuclear degrees of freedom in materials and molecules, and the correlation among structure, function, and previously hidden metastable or nonequilibrium states of matter. Ultrafast electron pulses play an essential role in this scientific endeavor, and their generation has been facilitated by rapid technical advances in both ultrafast laser and particle accelerator technologies. This review presents a summary of the noteworthy developments in this field in the last few decades. The physics and technology of ultrafast electron beams is presented with an emphasis on the figures of merit most relevant for ultrafast electron diffraction experiments. Recent developments in the generation, manipulation, and characterization of ultrashort electron beams aimed at improving the combined spatiotemporal resolution of these measurements are discussed. The fundamentals of electron scattering from atomic matter and the theoretical frameworks for retrieving dynamic structural information from solid-state and gas-phase samples is described. Essential experimental techniques and several landmark works that have applied these approaches are also highlighted to demonstrate the widening applicability of these methods. Ultrafast electron probes with ever-improving capabilities, combined with other complementary photon-based or spectroscopic approaches, hold tremendous potential for revolutionizing our ability t

Details

Database :
OAIster
Journal :
Department of Physics and Astronomy: Faculty Publications
Notes :
application/pdf
Publication Type :
Electronic Resource
Accession number :
edsoai.on1392356607
Document Type :
Electronic Resource