Back to Search Start Over

A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation.

Authors :
Laurent, Benoit
Laurent, Benoit
Ruitu, Lv
Murn, Jernej
Hempel, Kristina
Ferrao, Ryan
Xiang, Yang
Liu, Shichong
Garcia, Benjamin A
Wu, Hao
Wu, Feizhen
Steen, Hanno
Shi, Yang
Laurent, Benoit
Laurent, Benoit
Ruitu, Lv
Murn, Jernej
Hempel, Kristina
Ferrao, Ryan
Xiang, Yang
Liu, Shichong
Garcia, Benjamin A
Wu, Hao
Wu, Feizhen
Steen, Hanno
Shi, Yang
Source :
Molecular cell; vol 57, iss 6, 957-970; 1097-2765
Publication Year :
2015

Abstract

Lysine-specific demethylase 1 (LSD1) has been reported to repress and activate transcription by mediating histone H3K4me1/2 and H3K9me1/2 demethylation, respectively. The molecular mechanism that underlies this dual substrate specificity has remained unknown. Here we report that an isoform of LSD1, LSD1+8a, does not have the intrinsic capability to demethylate H3K4me2. Instead, LSD1+8a mediates H3K9me2 demethylation in collaboration with supervillin (SVIL), a new LSD1+8a interacting protein. LSD1+8a knockdown increases H3K9me2, but not H3K4me2, levels at its target promoters and compromises neuronal differentiation. Importantly, SVIL co-localizes to LSD1+8a-bound promoters, and its knockdown mimics the impact of LSD1+8a loss, supporting SVIL as a cofactor for LSD1+8a in neuronal cells. These findings provide insight into mechanisms by which LSD1 mediates H3K9me demethylation and highlight alternative splicing as a means by which LSD1 acquires selective substrate specificities (H3K9 versus H3K4) to differentially control specific gene expression programs in neurons.

Details

Database :
OAIster
Journal :
Molecular cell; vol 57, iss 6, 957-970; 1097-2765
Notes :
application/pdf, Molecular cell vol 57, iss 6, 957-970 1097-2765
Publication Type :
Electronic Resource
Accession number :
edsoai.on1391614069
Document Type :
Electronic Resource