Back to Search Start Over

Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects.

Authors :
Howe, Laurence J
Howe, Laurence J
Nivard, Michel G
Morris, Tim T
Hansen, Ailin F
Rasheed, Humaira
Cho, Yoonsu
Chittoor, Geetha
Ahlskog, Rafael
Lind, Penelope A
Palviainen, Teemu
van der Zee, Matthijs D
Cheesman, Rosa
Mangino, Massimo
Wang, Yunzhang
Li, Shuai
Klaric, Lucija
Ratliff, Scott M
Bielak, Lawrence F
Nygaard, Marianne
Giannelis, Alexandros
Willoughby, Emily A
Reynolds, Chandra A
Balbona, Jared V
Andreassen, Ole A
Ask, Helga
Baras, Aris
Bauer, Christopher R
Boomsma, Dorret I
Campbell, Archie
Campbell, Harry
Chen, Zhengming
Christofidou, Paraskevi
Corfield, Elizabeth
Dahm, Christina C
Dokuru, Deepika R
Evans, Luke M
de Geus, Eco JC
Giddaluru, Sudheer
Gordon, Scott D
Harden, K Paige
Hill, W David
Hughes, Amanda
Kerr, Shona M
Kim, Yongkang
Kweon, Hyeokmoon
Latvala, Antti
Lawlor, Deborah A
Li, Liming
Lin, Kuang
Magnus, Per
Magnusson, Patrik KE
Mallard, Travis T
Martikainen, Pekka
Mills, Melinda C
Njølstad, Pål Rasmus
Overton, John D
Pedersen, Nancy L
Porteous, David J
Reid, Jeffrey
Silventoinen, Karri
Southey, Melissa C
Stoltenberg, Camilla
Tucker-Drob, Elliot M
Wright, Margaret J
Social Science Genetic Association Consortium
Within Family Consortium
Hewitt, John K
Keller, Matthew C
Stallings, Michael C
Lee, James J
Christensen, Kaare
Kardia, Sharon LR
Peyser, Patricia A
Smith, Jennifer A
Wilson, James F
Hopper, John L
Hägg, Sara
Spector, Tim D
Pingault, Jean-Baptiste
Plomin, Robert
Havdahl, Alexandra
Bartels, Meike
Martin, Nicholas G
Oskarsson, Sven
Justice, Anne E
Millwood, Iona Y
Hveem, Kristian
Naess, Øyvind
Willer, Cristen J
Åsvold, Bjørn Olav
Koellinger, Philipp D
Kaprio, Jaakko
Medland, Sarah E
Walters, Robin G
Benjamin, Daniel J
Turley, Patrick
Evans, David M
Davey Smith, George
Hayward, Caroline
Brumpton, Ben
Howe, Laurence J
Howe, Laurence J
Nivard, Michel G
Morris, Tim T
Hansen, Ailin F
Rasheed, Humaira
Cho, Yoonsu
Chittoor, Geetha
Ahlskog, Rafael
Lind, Penelope A
Palviainen, Teemu
van der Zee, Matthijs D
Cheesman, Rosa
Mangino, Massimo
Wang, Yunzhang
Li, Shuai
Klaric, Lucija
Ratliff, Scott M
Bielak, Lawrence F
Nygaard, Marianne
Giannelis, Alexandros
Willoughby, Emily A
Reynolds, Chandra A
Balbona, Jared V
Andreassen, Ole A
Ask, Helga
Baras, Aris
Bauer, Christopher R
Boomsma, Dorret I
Campbell, Archie
Campbell, Harry
Chen, Zhengming
Christofidou, Paraskevi
Corfield, Elizabeth
Dahm, Christina C
Dokuru, Deepika R
Evans, Luke M
de Geus, Eco JC
Giddaluru, Sudheer
Gordon, Scott D
Harden, K Paige
Hill, W David
Hughes, Amanda
Kerr, Shona M
Kim, Yongkang
Kweon, Hyeokmoon
Latvala, Antti
Lawlor, Deborah A
Li, Liming
Lin, Kuang
Magnus, Per
Magnusson, Patrik KE
Mallard, Travis T
Martikainen, Pekka
Mills, Melinda C
Njølstad, Pål Rasmus
Overton, John D
Pedersen, Nancy L
Porteous, David J
Reid, Jeffrey
Silventoinen, Karri
Southey, Melissa C
Stoltenberg, Camilla
Tucker-Drob, Elliot M
Wright, Margaret J
Social Science Genetic Association Consortium
Within Family Consortium
Hewitt, John K
Keller, Matthew C
Stallings, Michael C
Lee, James J
Christensen, Kaare
Kardia, Sharon LR
Peyser, Patricia A
Smith, Jennifer A
Wilson, James F
Hopper, John L
Hägg, Sara
Spector, Tim D
Pingault, Jean-Baptiste
Plomin, Robert
Havdahl, Alexandra
Bartels, Meike
Martin, Nicholas G
Oskarsson, Sven
Justice, Anne E
Millwood, Iona Y
Hveem, Kristian
Naess, Øyvind
Willer, Cristen J
Åsvold, Bjørn Olav
Koellinger, Philipp D
Kaprio, Jaakko
Medland, Sarah E
Walters, Robin G
Benjamin, Daniel J
Turley, Patrick
Evans, David M
Davey Smith, George
Hayward, Caroline
Brumpton, Ben
Source :
Nature genetics; vol 54, iss 5, 581-592; 1061-4036
Publication Year :
2022

Abstract

Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.

Details

Database :
OAIster
Journal :
Nature genetics; vol 54, iss 5, 581-592; 1061-4036
Notes :
application/pdf, Nature genetics vol 54, iss 5, 581-592 1061-4036
Publication Type :
Electronic Resource
Accession number :
edsoai.on1391589197
Document Type :
Electronic Resource