Back to Search
Start Over
Neuromorphic auditory computing: towards a digital, event-based implementation of the hearing sense for robotics
- Publication Year :
- 2022
-
Abstract
- In this work, it is intended to advance on the development of the neuromorphic audio processing systems in robots through the implementation of an open-source neuromorphic cochlea, event-based models of primary auditory nuclei, and their potential use for real-time robotics applications. First, the main gaps when working with neuromorphic cochleae were identified. Among them, the accessibility and usability of such sensors can be considered as a critical aspect. Silicon cochleae could not be as flexible as desired for some applications. However, FPGA-based sensors can be considered as an alternative for fast prototyping and proof-of-concept applications. Therefore, a software tool was implemented for generating open-source, user-configurable Neuromorphic Auditory Sensor models that can be deployed in any FPGA, removing the aforementioned barriers for the neuromorphic research community. Next, the biological principles of the animals' auditory system were studied with the aim of continuing the development of the Neuromorphic Auditory Sensor. More specifically, the principles of binaural hearing were deeply studied for implementing event-based models to perform real-time sound source localization tasks. Two different approaches were followed to extract inter-aural time differences from event-based auditory signals. On the one hand, a digital, event-based design of the Jeffress model was implemented. On the other hand, a novel digital implementation of the Time Difference Encoder model was designed and implemented on FPGA. Finally, three different robotic platforms were used for evaluating the performance of the proposed real-time neuromorphic audio processing architectures. An audio-guided central pattern generator was used to control a hexapod robot in real-time using spiking neural networks on SpiNNaker. Then, a sensory integration application was implemented combining sound source localization and obstacle avoidance for autonomous robots navigation. Lastly, the Neu<br />En este trabajo se pretende avanzar en el desarrollo de los sistemas de procesamiento de audio neuromórficos en robots a través de la implementación de una cóclea neuromórfica de código abierto, modelos basados en eventos de los núcleos auditivos primarios, y su potencial uso para aplicaciones de robótica en tiempo real. En primer lugar, se identificaron los principales problemas a la hora de trabajar con cócleas neuromórficas. Entre ellos, la accesibilidad y usabilidad de dichos sensores puede considerarse un aspecto crítico. Los circuitos integrados analógicos que implementan modelos cocleares pueden no pueden ser tan flexibles como se desea para algunas aplicaciones específicas. Sin embargo, los sensores basados en FPGA pueden considerarse una alternativa para el desarrollo rápido y flexible de prototipos y aplicaciones de prueba de concepto. Por lo tanto, en este trabajo se implementó una herramienta de software para generar modelos de sensores auditivos neuromórficos de código abierto y configurables por el usuario, que pueden desplegarse en cualquier FPGA, eliminando las barreras mencionadas para la comunidad de investigación neuromórfica. A continuación, se estudiaron los principios biológicos del sistema auditivo de los animales con el objetivo de continuar con el desarrollo del Sensor Auditivo Neuromórfico (NAS). Más concretamente, se estudiaron en profundidad los principios de la audición binaural con el fin de implementar modelos basados en eventos para realizar tareas de localización de fuentes sonoras en tiempo real. Se siguieron dos enfoques diferentes para extraer las diferencias temporales interaurales de las señales auditivas basadas en eventos. Por un lado, se implementó un diseño digital basado en eventos del modelo Jeffress. Por otro lado, se diseñó una novedosa implementación digital del modelo de codificador de diferencias temporales y se implementó en FPGA. Por último, se utilizaron tres plataformas robóticas diferentes para evaluar el rendimi
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1391303202
- Document Type :
- Electronic Resource