Back to Search
Start Over
Practical Algorithms and Analysis for Next-Generation Decentralized Vehicular Networks
- Publication Year :
- 2021
-
Abstract
- The development of autonomous ground and aerial vehicles has driven the requirement for radio access technologies (RATs) to support low latency applications. While onboard sensors such as Light Detection and Ranging (LIDAR), Radio Detection and Ranging (RADAR), and cameras can sense and assess the immediate space around the vehicle, RATs are crucial for the exchange of information on critical events, such as accidents and changes in trajectory, with other vehicles and surrounding infrastructure in a timely manner. Simulations and analytical models are critical in modelling and designing efficient networks. In this dissertation, we focus on (a) proposing and developing algorithms to improve the performance of decentralized vehicular communications in safety critical situations and (b) supporting these proposals with simulation and analysis of the two most popular RAT standards, the Dedicated Short Range Communications (DSRC) standard, and the Cellular vehicle-to-everything (C-V2X) standard. In our first contribution, we propose a risk based protocol for vehicles using the DSRC standard. The protocol allows a higher beacon transmission rate for vehicles that are at a higher risk of collision. We verify the benefits of the risk based protocol over conventional DSRC using ns-3 simulations. Two risk based beacon rate protocols are evaluated in our ns-3 simulator, one that adapts the beacon rate between 1 and 10 Hz, and another between 1 and 20 Hz. Our results show that both protocols improve the packet delivery ratio (PDR) performance by up to 45% in congested environments using the 1-10 Hz adaptive beacon rate protocol and by 38% using the 1-20 Hz adaptive scheme. The two adaptive beacon rate protocol simulation results also show that the likelihood of a vehicle collision due to missed packets decreases by up to 41% and 77% respectively, in a three lane dense highway scenario with 160 vehicles operating at different speeds. In our second contribution, we study the perfo
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1391196214
- Document Type :
- Electronic Resource