Back to Search Start Over

Chromosome and Genome Evolution in Culicinae Mosquitoes

Authors :
Masri, Reem Abed
Masri, Reem Abed
Publication Year :
2021

Abstract

The Culicinae is the most extensive subfamily among the Culicidae family of mosquitoes. Two genera, Culex and Aedes, from this subfamily have world-wide distribution and are responsible for transmitting of several deadly diseases including Zika, West Nile fevers, chikungunya, dengue, and Rift Valley fevers. Developing high-quality genome assembly for mosquitoes, studying their population structure, and evolution can help to facilitate the development of new strategies for vector control. Studies on Aedes albopitcus as well as on species from the Culex pipiens complex, which are widely spread in the United States, provide excellent models on these topics. Ae. albopictus is one of the most dangerous invasive mosquito species in the world that transmits more than 20 arboviruses. This species has highly repetitive genome that is the largest among mosquito genomes sequenced so far. Thus, sequencing and assembling of such genome is extremally challenging. As a result, the lack of high-quality Ae. albopictus genome assembly has delayed the progress in understanding its biology. To produce a high-quality genome assembly, it was important to anchor genomic scaffolds to the cytogenetic map creating a physical map of the genome assembly. We first developed a new gene-based approach for the physical mapping of repeat-rich mosquito genomes. The approach utilized PCR amplification of the DNA probes based on complementary DNA (cDNA) that does not include repetitive DNA sequences. This method was then used for the development of a physical map for Ae. albopictus based on the in situ hybridization of fifty cDNA fragments or gene exons from twenty-four scaffolds to the mitotic chromosomes from imaginal discs. This study resulted in the construction of a first physical map of the Ae. albopictus genome as well as mapping viral integration and polyphenol oxidase genes. Moreover, comparing our present Ae. albopictus physical map to the current Ae. aegypti assembly indicated the presence

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1391192966
Document Type :
Electronic Resource