Back to Search
Start Over
Maize R gene Rxo1 Confers Disease Resistance on Pepper and Nicotiana benthamiana
- Publication Year :
- 2023
-
Abstract
- Pepper is a popular and important vegetable crop grown and consumed worldwide. However, pepper production is threatened by the gram-negative bacterium Xanthomonas euvesicatoria (Xe) which causes bacterial spot (BS) disease, one of the most common and destructive diseases on pepper. Due to limited genetic resistance resources in host species, a promising strategy for controlling BS disease is to transfer nonhost disease resistance (R) genes from other plant species into pepper plants to confer broad-spectrum and durable resistance. A maize R gene Rxo1 has been functionally transferred to rice plants and confers nonhost resistance to rice pathogen Xanthomonas oryzae pv. oryzicola (Xoc) carrying a type III effector (T3E) AvrRxo1. Most Xe strains carry a T3E Xe4428, a homolog of AvrRxo1. Therefore, Rxo1 could be potentially employed to develop Xe-resistant pepper. In addition, a better understanding of the virulence function of Xe4428 may provide insights into the pathogenesis of Xe and new strategies for crop improvement. In this dissertation, we transformed Rxo1 into the far-related dicot species Nicotiana benthamiana and pepper, and characterized the Rxo1-mediated disease resistance against Xe strains carrying AvrRxo1 or Xe4428. In addition, we explored the virulence function and mechanism of Xe4428. In the Rxo1-transgenic N. benthamiana, we demonstrated that Rxo1 could condition resistance to Xe harboring AvrRxo1 but not Xe4428. We revealed that AvrRxo1 could directly interact with the nucleotide-binding domain of Rxo1 in vivo and in vitro. We further demonstrated that the nucleus localization of AvrRxo1 was required for its avirulence and virulence functions. In addition, the cytosol localization of Rxo1 was also necessary to confer disease resistance. The downstream signaling component NbNDR1 was demonstrated to be involved in Rxo1/AvrRxo1-mediated disease resistance. By RNAseq-based gene expression profiling, we identified six candidate genes of interest up-regul
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1391183010
- Document Type :
- Electronic Resource