Back to Search
Start Over
Modeling Fiber Orientation using Empirical Parameters Obtained from Non-Lubricated Squeeze Flow for Injection Molded Long Carbon Fiber Reinforced Nylon 6,6
- Publication Year :
- 2021
-
Abstract
- Long fiber reinforced thermoplastic composites are used for creating lightweight, but mechanically sound, automotive components. Injection molding is a manufacturing technique commonly used for traditional thermoplastics due to its efficiency and ability to create complex geometries. Injection molding feedstock is often in the form of pellets. Therefore, fiber composites must be chopped for use in this manufacturing method. The fibers are cut to a length of 13 mm and then fiber attrition occurs during processing. The combination of chopping the fibers into pellets and fiber breakage creates a distribution of mostly short fiber lengths, with some longer fibers remaining. Discontinuous fiber reinforcements are classified as long for aspect ratios greater than 100. For glass fibers, that distinction occurs at a length of 1 mm, and for carbon fibers 0.5 mm. Traditional composite materials and manufacturing processes utilize continuous fibers with a controlled orientation and length. The use of chopped discontinuous fibers requires a method to predict the orientation of the fibers in the final molded piece because mechanical properties are dependent on fiber length and orientation. The properties and behavior of the flow of a fiber reinforced polymer composite during molding are directly related to the mechanical properties of the completed part. Flow affects the orientation of the fibers within the polymer matrix and at locations within the mold cavity. The ability to predict, and ultimately control, flow properties allows for the efficient design of safe parts for industrial uses, such as vehicle parts in the automotive industry. The goal of this work is to test material characterization techniques developed for measuring and predicting the orientation of fiber reinforced injection molded thermoplastics using commercial grade long carbon fiber (LCF) reinforced nylon 6,6 (PA 6,6). Forty weight percent LCF/PA 6,6 with a weight averaged fiber length of 1.242 mm was inject
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1391181851
- Document Type :
- Electronic Resource