Back to Search
Start Over
Stability of system of additive functional equations in various Banach spaces: Classical Hyers methods
Stability of system of additive functional equations in various Banach spaces: Classical Hyers methods
- Source :
- Malaya Journal of Matematik; Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM); 91-112; 2321-5666; 2319-3786
- Publication Year :
- 2018
-
Abstract
- In this paper, authors proved the generalized Ulam - Hyers stability of system of additive functional equations$$\begin{aligned}& f\left(\sum_{a=1}^n a x_a\right)=\sum_{a=1}^n\left(a f\left(x_a\right)\right) ; \quad n \geq 1 \\& g\left(\sum_{a=1}^n 2 a y_{2 a}\right)=\sum_{a=1}^n\left(2 a g\left(y_{2 a}\right)\right) ; \quad n \geq 1 \\& h\left(\sum_{a=1}^n(2 a-1) z_{2 a-1}\right)=\sum_{a=1}^n\left((2 a-1) h\left(z_{2 a-1}\right)\right) ; \quad n \geq 1\end{aligned}$$where $n$ is a positive integer, which is originating from sum of first $n$, natural numbers, even natural numbers and odd natural numbers, respectively in various Banach spaces.
Details
- Database :
- OAIster
- Journal :
- Malaya Journal of Matematik; Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM); 91-112; 2321-5666; 2319-3786
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1391126444
- Document Type :
- Electronic Resource