Back to Search
Start Over
A 23-to-29GHz Receiver with mm-Wave N-Input-N-Output Spatial Notch Filtering and Autonomous Notch-Steering Achieving 20-to-40dB mm-Wave Spatial Rejection and -14dBm In-Notch IP1 dB
- Publication Year :
- 2022
-
Abstract
- Digital beamforming receivers (RXs) support MIMO operation and offer great flexibility and accuracy in multi-beam formation and calibration. However, compared with analog phased-array and hybrid systems, due to the absence of any rejection for spatial in-band blockers, the RX/ADC dynamic range and linearity should be high enough to prevent array saturation. Therefore, the use of self-steering spatial notch filters (SNFs) is necessary to aid the digital beamformers and reduce RX/ADC power consumption while strong blockers exist. To address that, the sub-6GHz RXs in [1], [2] synthesize a baseband spatial notch impedance and translate it to RF by passive mixers. However, this technique cannot be directly applied at mm-wave frequencies as the impedance translational performance of the passive mixers degrades significantly. Hence, the mm-wave beamformer in [3] realizes a cascadable SNF at an intermediate frequency (IF). However, the front-end mm-wave components like mixers and phase shifters have to tolerate strong blockers, thus degrading RX linearity. Besides, it uses multiple IF buffers and VGAs for signal scaling and combining, which could be power-hungry if a similar method is adopted to realize a mm-wave SNF. To improve on those limitations, we propose a scalable SNF structure, which (1) suppresses the strongest in-band blocker at mm-wave frequencies, (2) supports N-input-N-output MIMOs, and (3) requires no active blocks except the phase shifters. A two-step autonomous notch-steering technique is also developed to adjust the SNF notch direction power-efficiently and accurately.<br />Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br />Electronics
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1390839410
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1109.ISSCC42614.2022.9731108