Back to Search
Start Over
SARS-CoV-2 and stroke characteristics: a report from the Multinational COVID-19 Stroke Study Group
- Publication Year :
- 2020
-
Abstract
- Background: Stroke is reported as a consequence of SARS-CoV-2 infection. However, there is a lack of regarding comprehensive stroke phenotype and characteristics Methods: We conducted a multinational observational study on features of consecutive acute ischemic stroke (AIS), intracranial hemorrhage (ICH), and cerebral venous or sinus thrombosis (CVST) among SARS-CoV-2 infected patients. We further investigated the association of demographics, clinical data, geographical regions, and countries’ health expenditure among AIS patients with the risk of large vessel occlusion (LVO), stroke severity as measured by National Institute of Health stroke scale (NIHSS), and stroke subtype as measured by the TOAST criteria. Additionally, we applied unsupervised machine learning algorithms to uncover possible similarities among stroke patients. Results: Among the 136 tertiary centers of 32 countries who participated in this study, 71 centers from 17 countries had at least one eligible stroke patient. Out of 432 patients included, 323(74.8%) had AIS, 91(21.1%) ICH, and 18(4.2%) CVST. Among 23 patients with subarachnoid hemorrhage, 16(69.5%) had no evidence of aneurysm. A total of 183(42.4%) patients were women, 104(24.1%) patients were younger than 55 years, and 105(24.4%) patients had no identifiable vascular risk factors. Among 380 patients who had known interval onset of the SARS-CoV-2 and stroke, 144(37.8%) presented to the hospital with chief complaints of stroke-related symptoms, with asymptomatic or undiagnosed SARS-CoV-2 infection. Among AIS patients 44.5% had LVO; 10% had small artery occlusion according to the TOAST criteria. We observed a lower median NIHSS (8[3-17], versus 11 [5-17]; p=0.02) and higher rate of mechanical thrombectomy (12.4% versus 2%; p<0.001) in countries with middle to high-health expenditure when compared to countries with lower health expenditure. The unsupervised machine learning identified 4 subgroups, with a relatively large group with no or limi
Details
- Database :
- OAIster
- Notes :
- application/zip, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1390672750
- Document Type :
- Electronic Resource