Back to Search Start Over

Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress

Authors :
Chemistry
Center for Drug Discovery
Byrne, Frances L.
Olzomer, Ellen M.
Marriott, Gabriella R.
Quek, Lake-Ee
Katen, Alice
Su, Jacky
Nelson, Marin E.
Hart-Smith, Gene
Larance, Mark
Sebesfi, Veronica F.
Cuff, Jeff
Martyn, Gabriella E.
Childress, Elizabeth
Alexopoulos, Stephanie J.
Poon, Ivan K.
Faux, Maree C.
Burgess, Antony W.
Reid, Glen
McCarroll, Joshua A.
Santos, Webster L.
Quinlan, Kate G. R.
Turner, Nigel
Fazakerley, Daniel J.
Kumar, Naresh
Hoehn, Kyle L.
Chemistry
Center for Drug Discovery
Byrne, Frances L.
Olzomer, Ellen M.
Marriott, Gabriella R.
Quek, Lake-Ee
Katen, Alice
Su, Jacky
Nelson, Marin E.
Hart-Smith, Gene
Larance, Mark
Sebesfi, Veronica F.
Cuff, Jeff
Martyn, Gabriella E.
Childress, Elizabeth
Alexopoulos, Stephanie J.
Poon, Ivan K.
Faux, Maree C.
Burgess, Antony W.
Reid, Glen
McCarroll, Joshua A.
Santos, Webster L.
Quinlan, Kate G. R.
Turner, Nigel
Fazakerley, Daniel J.
Kumar, Naresh
Hoehn, Kyle L.
Publication Year :
2020

Abstract

A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD(+) ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1389867340
Document Type :
Electronic Resource