Back to Search Start Over

A Hybrid Model Using Hidden Markov Chain and Logic Model for Daily Living Activity Recognition

Authors :
Graduate School of Engineering, Kyushu Institute of Technology, 804-8550 Kitakyushu, Japan
Lago, Paula
Inoue, Sozo
Graduate School of Engineering, Kyushu Institute of Technology, 804-8550 Kitakyushu, Japan
Lago, Paula
Inoue, Sozo
Publication Year :
2019

Abstract

type:Conference Paper<br />We detail the solution to the UCAmI Cup Challenge to recognizing on going activities at home from sensor measurements. We use binary sensors and proximity sensor measurements for the recognition. We use an hybrid strategy, combining a probabilistic model and a definition-based model. The former consists of a Hidden Markov Model using the result of a neural network as emission probabilities. It is trained with the labelled data provided by the Cup. The latter approach takes advantage of the descriptions provided for each of the activities which are expressed in logical statements based on the sensors states. We then combine the results with a weighted average. We compare the performance of each individual strategy and of the combined strategy.<br />12th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2018), 4–7 December 2018, Punta Cana, Dominican Republic<br />source:https://doi.org/10.3390/proceedings2191266

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1389678986
Document Type :
Electronic Resource