Back to Search Start Over

Prediction of Plastic Fragments in Recycled Paper Using Near-Infrared Spectroscopy

Publication Year :
2023

Abstract

Sustainability has gained a lot of attention in the field of research. Researchers and consumers both prioritize sustainability and environmental issues over previously dominant materials, such as plastic. Packaging and disposable items that used to be made of plastic have largely been replaced with paper. Unfortunately, paper does not perform as well as plastic regarding barrier properties against grease, oxygen, or water vapor. Barrier properties are an important factor when choosing packaging material for food, among other things, as they help maintain the shelf life of the product. In order to improve the properties of the paper packaging and expand its use, the paper is coated with a polymer. However, the polymer contributes to challenges in the recycling of the products as some of the polymer attaches to the fibers, causing difficulties in the separation of each material. Small fragments of plastic may end up in the material streams and the recycled pulp due to the existing challenges in completely removing plastic from cellulosic substrates during recycling. This thesis analyzes the possibilities of identifying and classifying plastic fragments of polyethylene (PE) and polyvinyl alcohol (PVOH) in recycled paper sheets using near-infrared spectroscopy together with multivariate data analysis. The purpose of the work is to develop models that can identify possible residues that may appear in recycled products from various industries. Paper sheets of two different grammages and six different compositions of recycled fiber and virgin fiber were created and scanned by NIR, with and without plastic film under the sheets. The scans were used to develop classification models to identify and categorize scans not included in the calibration data set. The performance of the models was tested by applying them to images of sheets of paper with plastic fragments of different sizes and different type underneath. The results indicated potential in the method. The prediction

Details

Database :
OAIster
Notes :
Alieva, Fidan
Publication Type :
Electronic Resource
Accession number :
edsoai.on1387573924
Document Type :
Electronic Resource