Back to Search
Start Over
Sequential Phase-Shifted Model Predictive Control for a Multilevel Converter with Integrated Battery Energy Storage
- Publication Year :
- 2020
-
Abstract
- Cascaded converters have risen as a suitable solution for the connection of Utility-scale Battery Energy Storage Systems (BESS) to the grid. These converters allow to split the battery array into the power modules, reducing the total series-connected battery cells and improving the reliability of the system. Different types of modules have been proposed to integrate the batteries in the converter. The three-port full-bridge module connects the batteries through a second deport decoupled from the harmful low-frequency oscillations and current peaks. However, the multi-variable controller required to manage the power interaction between the battery and the grid presents a challenge in terms of computational burden and scalability. This work proposes the use of the Sequential Phase-Shifted Model Predictive Control (PS-MPC) in a multilevel BESS implementation using three-port full-bridge modules. The proposed controller outperforms a standard FCS-MPC, as it obtains the optimal duty cycles for the operation of the converter with the same fast dynamic response, but also with the fixed spectrum of the PS-PWM and low computational burden, which facilitates its scalability to multilevel BESS with a large number of cells. Simulation results show the ability of the system to exchange different amounts of power with the grid, ensuring the best battery operational conditions.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1382613763
- Document Type :
- Electronic Resource