Back to Search Start Over

Quantum approximate optimization via learning-based adaptive optimization

Authors :
Cheng, Lixue
Chen, Yu-Qin
Zhang, Shi-Xin
Zhang, Shengyu
Cheng, Lixue
Chen, Yu-Qin
Zhang, Shi-Xin
Zhang, Shengyu
Publication Year :
2023

Abstract

Combinatorial optimization problems are ubiquitous and computationally hard to solve in general. Quantum approximate optimization algorithm (QAOA), one of the most representative quantum-classical hybrid algorithms, is designed to solve combinatorial optimization problems by transforming the discrete optimization problem into a classical optimization problem over continuous circuit parameters. QAOA objective landscape is notorious for pervasive local minima, and its viability significantly relies on the efficacy of the classical optimizer. In this work, we design double adaptive-region Bayesian optimization (DARBO) for QAOA. Our numerical results demonstrate that the algorithm greatly outperforms conventional optimizers in terms of speed, accuracy, and stability. We also address the issues of measurement efficiency and the suppression of quantum noise by conducting the full optimization loop on a superconducting quantum processor as a proof of concept. This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.<br />Comment: Main text: 11 pages, 4 figures, SI: 5 pages, 5 figures

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1381613276
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s42005-024-01577-x