Back to Search Start Over

Multiparametric MRI for the improved diagnostic accuracy of Alzheimer’s disease and mild cognitive impairment: research protocol of a case-control study design

Authors :
Dayor Piersson, Albert
Ibrahim, Buhari
Suppiah, Subapriya
Mohamad, Mazlyfarina
Abu Hassan, Hasyma
Omar, Nur Farhayu
Ibrahim, Mohd Izuan
Yusoff, Ahmad Nazlim
Ibrahim, Normala
Saripan, M. Iqbal
Razali, Rizah Mazzuin
Dayor Piersson, Albert
Ibrahim, Buhari
Suppiah, Subapriya
Mohamad, Mazlyfarina
Abu Hassan, Hasyma
Omar, Nur Farhayu
Ibrahim, Mohd Izuan
Yusoff, Ahmad Nazlim
Ibrahim, Normala
Saripan, M. Iqbal
Razali, Rizah Mazzuin
Publication Year :
2021

Abstract

Background: Alzheimer’s disease (AD) is a major neurocognitive disorder identified by memory loss and a significant cognitive decline based on previous level of performance in one or more cognitive domains that interferes in the independence of everyday activities. The accuracy of imaging helps to identify the neuropathological features that differentiate AD from its common precursor, mild cognitive impairment (MCI). Identification of early signs will aid in risk stratification of disease and ensures proper management is instituted to reduce the morbidity and mortality associated with AD. Magnetic resonance imaging (MRI) using structural MRI (sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy ( 1 H-MRS) performed alone is inadequate. Thus, the combination of multiparametric MRI is proposed to increase the accuracy of diagnosing MCI and AD when compared to elderly healthy controls. Methods: This protocol describes a non-interventional case control study. The AD and MCI patients and the healthy elderly controls will undergo multi-parametric MRI. The protocol consists of sMRI, fMRI, DTI, and single-voxel proton MRS sequences. An eco-planar imaging (EPI) will be used to perform resting-state fMRI sequence. The structural images will be analysed using Computational Anatomy Toolbox-12, functional images will be analysed using Statistical Parametric Mapping-12, DPABI (Data Processing & Analysis for Brain Imaging), and Conn software, while DTI and 1 H-MRS will be analysed using the FSL (FMRIB’s Software Library) and Tarquin respectively. Correlation of the MRI results and the data acquired from the APOE genotyping, neuropsychological evaluations (i.e. Montreal Cognitive Assessment [MoCA], and Mini–Mental State Examination [MMSE] scores) will be performed. The imaging results will also be correlated with the sociodemographic factors. The diagnosis of AD and MCI will be standardized and based on the DSM-5 criteria and the neurops

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1380647066
Document Type :
Electronic Resource