Back to Search Start Over

A planetary chamber to investigate the thermal and water cycle on Mars

Authors :
Martín-Torres, F. J.
Zorzano, María Paz
Vakkada Ramachandran, Abhilash
Martín-Torres, F. J.
Zorzano, María Paz
Vakkada Ramachandran, Abhilash
Publication Year :
2022

Abstract

The water processes that affect the upper layers of the surface of Mars are not yet fully understood. Describing the processes that may induce changes in the water content ofthe surface is critical to determine the present-day habitability of the Martian surface,understand the atmospheric water cycle, and estimate the efficiency of future water extraction procedures from the regolith for In-Situ-Resource-Utilization (ISRU). This PhD thesis describes the design, development, and plausible uses of a Martian environmental facility ‘SpaceQ chamber’ which allows to simulate the near surface water cycle. This facility has been specifically designed to investigate the effect of water on the Martian surface. SpaceQ has been used to investigate the material curation and has demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block, and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight. The thesis also includes the testing of HABIT operation, of theESA/IKI ExoMars 2022 robotic mission to Mars, within the SpaceQ chamber, underMartian conditions similar to those expected at Oxia Planum. The tests monitor the performance of the brine compartment, when deliquescent salts are exposed to atmospheric water. In this thesis, a computational model of the SpaceQ using COMSOL Multiphysics has been implemented to study the thermal gradients and the near surface water cycle under Martian temperature and pressure experimental conditions. The model shows good agreement with experiments on the thermal equilibration time scales and gradients. The model is used to extrapolate the one-point relative humidity measurement of the experimental to each grid points in the simulation. This gives an understanding ofthe gradient in atmospheric water relative humidity to which the experimental samples such as deliquescent salts and Martian regolit

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1380456209
Document Type :
Electronic Resource