Back to Search Start Over

Toward predictive food process models: a protocol for parameter estimation

Authors :
European Commission
Ministerio de Ciencia e Innovación (España)
Consejo Superior de Investigaciones Científicas (España)
Vilas Fernández, Carlos
Arias-Méndez, Ana
García, Miriam R.
Alonso, Antonio A.
Balsa-Canto, Eva
European Commission
Ministerio de Ciencia e Innovación (España)
Consejo Superior de Investigaciones Científicas (España)
Vilas Fernández, Carlos
Arias-Méndez, Ana
García, Miriam R.
Alonso, Antonio A.
Balsa-Canto, Eva
Publication Year :
2018

Abstract

Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1380454950
Document Type :
Electronic Resource