Cite
DeNovoCNN: A deep learning approach to de novo variant calling in next generation sequencing data
MLA
Khazeeva, G., et al. “DeNovoCNN: A Deep Learning Approach to de Novo Variant Calling in next Generation Sequencing Data.” Nucleic Acids Research, 2022. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1377144233&authtype=sso&custid=ns315887.
APA
Khazeeva, G., Sablauskas, K., Sanden, P. G. H. van der, Steyaert, W. A. R., Kwint, M. P., Rots, D., Hinne, M., Gerven, M. A. J. van, Yntema, H. G., Vissers, L. E. L. M., & Gilissen, C. F. H. A. (2022). DeNovoCNN: A deep learning approach to de novo variant calling in next generation sequencing data. Nucleic Acids Research.
Chicago
Khazeeva, G., K. Sablauskas, P.G.H. van der Sanden, W.A.R. Steyaert, M.P. Kwint, D. Rots, M. Hinne, et al. 2022. “DeNovoCNN: A Deep Learning Approach to de Novo Variant Calling in next Generation Sequencing Data.” Nucleic Acids Research. http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsoai&AN=edsoai.on1377144233&authtype=sso&custid=ns315887.