Back to Search Start Over

DeNovoCNN: A deep learning approach to de novo variant calling in next generation sequencing data

Authors :
Khazeeva, G.
Sablauskas, K.
Sanden, P.G.H. van der
Steyaert, W.A.R.
Kwint, M.P.
Rots, D.
Hinne, M.
Gerven, M.A.J. van
Yntema, H.G.
Vissers, L.E.L.M.
Gilissen, C.F.H.A.
Khazeeva, G.
Sablauskas, K.
Sanden, P.G.H. van der
Steyaert, W.A.R.
Kwint, M.P.
Rots, D.
Hinne, M.
Gerven, M.A.J. van
Yntema, H.G.
Vissers, L.E.L.M.
Gilissen, C.F.H.A.
Source :
Nucleic Acids Research; 0305-1048; 17; 50; e97; ~Nucleic Acids Research~~~~~0305-1048~17~50~~e97
Publication Year :
2022

Abstract

Contains fulltext : 251286.pdf (Publisher’s version ) (Open Access)<br />De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160×164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.

Details

Database :
OAIster
Journal :
Nucleic Acids Research; 0305-1048; 17; 50; e97; ~Nucleic Acids Research~~~~~0305-1048~17~50~~e97
Publication Type :
Electronic Resource
Accession number :
edsoai.on1377144233
Document Type :
Electronic Resource