Back to Search Start Over

Differential Evolution Optimal Parameters Tuning with Artificial Neural Network

Authors :
Ingeniería de sistemas y automática
Ingeniería nuclear y mecánica de fluidos
Sistemen ingeniaritza eta automatika
Ingeniaritza nuklearra eta jariakinen mekanika
Centeno Telleria, Manu
Zulueta Guerrero, Ekaitz
Fernández Gámiz, Unai
Teso Fernández de Betoño, Daniel
Teso Fernández de Betoño, Adrián
Ingeniería de sistemas y automática
Ingeniería nuclear y mecánica de fluidos
Sistemen ingeniaritza eta automatika
Ingeniaritza nuklearra eta jariakinen mekanika
Centeno Telleria, Manu
Zulueta Guerrero, Ekaitz
Fernández Gámiz, Unai
Teso Fernández de Betoño, Daniel
Teso Fernández de Betoño, Adrián
Publication Year :
2021

Abstract

Differential evolution (DE) is a simple and efficient population-based stochastic algorithm for solving global numerical optimization problems. DE largely depends on algorithm parameter values and search strategy. Knowledge on how to tune the best values of these parameters is scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links between the algorithm performance and parameter values. To do so, first, a data-set is generated and normalized, then the ANN approach is performed, and finally, the best parameter values are extracted. The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise with the application of this method. For each case, specifications about the procedure to follow are given. Finally, a comparison with four tuning rules is performed in order to verify and validate the proposed method’s performance. This study provides a thorough insight into optimal parameter tuning, which may be of great use for users.

Details

Database :
OAIster
Notes :
The authors appreciate the support to the government of the Basque Country through research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099., English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1376897473
Document Type :
Electronic Resource