Back to Search
Start Over
Genomic Insights into Niche Partitioning across Sediment Depth among Anaerobic Methane-Oxidizing Archaea in Global Methane Seeps
- Publication Year :
- 2023
-
Abstract
- Marine sediments are important methane reservoirs. Methane efflux from the seabed is significantly restricted by anaerobic methanotrophic (ANME) archaea through a process known as anaerobic oxidation of methane (AOM). Different clades of ANME archaea occupy distinct niches in methane seeps, but their underlying molecular mechanisms still need to be fully understood. To provide genetic explanations for the niche partitioning of ANME archaea, we applied comparative genomic analysis to ANME archaeal genomes retrieved from global methane seeps. Our results showed that ANME-2 archaea are more prevalent than ANME-1 archaea in shallow sediments because they carry genes that encode a significantly higher number of outer membrane multiheme c-type cytochromes and flagellar proteins. These features make ANME-2 archaea perform direct interspecies electron transfer better and benefit more from electron acceptors in AOM. Besides, ANME-2 archaea carry genes that encode extra peroxidase compared to ANME-1 archaea, which may lead to ANME-2 archaea better tolerating oxygen toxicity. In contrast, ANME-1 archaea are more competitive in deep layers than ANME-2 archaea because they carry extra genes (mtb and mtt) for methylotrophic methanogenesis and a significantly higher number of frh and mvh genes for hydrogenotrophic methanogenesis. Additionally, ANME-1 archaea carry exclusive genes (sqr, TST, and mddA) involved in sulfide detoxification compared to ANME-2 archaea, leading to stronger sulfide tolerance. Overall, this study reveals the genomic mechanisms shaping the niche partitioning among ANME archaea in global methane seeps.IMPORTANCE Anaerobic methanotrophic (ANME) archaea are important methanotrophs in marine sediment, controlling the flux of biologically generated methane, which plays an essential role in the marine carbon cycle and climate change. So far, no strain of this lineage has been isolated in pure culture, which makes metagenomics one of the fundamental approaches to r
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1376638942
- Document Type :
- Electronic Resource