Back to Search Start Over

DeepDefrag:spatio-temporal defragmentation of time-varying virtual networks in computing power network based on model-assisted reinforcement learning

Authors :
Ma, H. (Huangxu)
Zhang, J. (Jiawei)
Gu, Z. (Zhiqun)
Yu, H. (Hao)
Taleb, T. (Tarik)
Ji, Y. (Yuefeng)
Ma, H. (Huangxu)
Zhang, J. (Jiawei)
Gu, Z. (Zhiqun)
Yu, H. (Hao)
Taleb, T. (Tarik)
Ji, Y. (Yuefeng)
Publication Year :
2022

Abstract

We propose DeepDefrag, a model-assisted reinforcement learning for spatio-temporal defragmentation of time-varying virtual networks in a cross-layer optical network testbed, which realizes the efficient utilization of computing nodes and lightpaths by co-optimizing scheduling and embedding with fragment matching, reduces >13.5% cost of computing power network.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1373797687
Document Type :
Electronic Resource