Back to Search Start Over

Classification models of action research arm test activities in post-stroke patients based on human hand motion

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
Padilla Magaña, Jesús Fernando
Peña Pitarch, Esteve
Universitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
Padilla Magaña, Jesús Fernando
Peña Pitarch, Esteve
Publication Year :
2022

Abstract

The Action Research Arm Test (ARAT) presents a ceiling effect that prevents the detection of improvements produced with rehabilitation treatments in stroke patients with mild finger joint impairments. The aim of this study was to develop classification models to predict whether activities with similar ARAT scores were performed by a healthy subject or by a subject post-stroke using the extension and flexion angles of 11 finger joints as features. For this purpose, we used three algorithms: Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN). The dataset presented class imbalance, and the classification models presented a low recall, especially in the stroke class. Therefore, we implemented class balance using Borderline-SMOTE. After data balancing the classification models showed significantly higher accuracy, recall, f1-score, and AUC. However, after data balancing, the SVM classifier showed a higher performance with a precision of 98%, a recall of 97.5%, and an AUC of 0.996. The results showed that classification models based on human hand motion features in combination with the oversampling algorithm Borderline-SMOTE achieve higher performance. Furthermore, our study suggests that there are differences in ARAT activities performed between healthy and post-stroke individuals that are not detected by the ARAT scoring process.<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
17 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1372988591
Document Type :
Electronic Resource