Back to Search Start Over

Spaces of Besov-Sobolev type and a problem on nonlinear approximation

Authors :
UCL - SST/IRMP - Institut de recherche en mathématique et physique
Domínguez, Óscar
Seeger, Andreas
Street, Brian
Van Schaftingen, Jean
Yung, Po-Lam
UCL - SST/IRMP - Institut de recherche en mathématique et physique
Domínguez, Óscar
Seeger, Andreas
Street, Brian
Van Schaftingen, Jean
Yung, Po-Lam
Source :
Journal of Functional Analysis, Vol. 284, no.4, p. 109775 (2023)
Publication Year :
2023

Abstract

We study fractional variants of the quasi-norms introduced by Brezis, Van Schaftingen, and Yung in the study of the Sobolev space Ẇ1,p. The resulting spaces are identified as a special class of real interpolation spaces of Sobolev-Slobodeckiĭ spaces. We establish the equivalence between Fourier analytic definitions and definitions via difference operators acting on measurable functions. We prove various new results on embeddings and non-embeddings, and give applications to harmonic and caloric extensions. For suitable wavelet bases we obtain a characterization of the approximation spaces for best n-term approximation from a wavelet basis via smoothness conditions on the function; this extends a classical result by DeVore, Jawerth and Popov.

Details

Database :
OAIster
Journal :
Journal of Functional Analysis, Vol. 284, no.4, p. 109775 (2023)
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1372938611
Document Type :
Electronic Resource