Back to Search
Start Over
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Promotes Angiogenesis and Ischemia-Induced Neovascularization Via NADPH Oxidase 4 (NOX4) and Nitric Oxide-Dependent Mechanisms.
- Publication Year :
- 2015
-
Abstract
- BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the ability to inhibit angiogenesis by inducing endothelial cell death, as well as being able to promote pro-angiogenic activity in vitro. These seemingly opposite effects make its role in ischemic disease unclear. Using Trail(-/-) and wildtype mice, we sought to determine the role of TRAIL in angiogenesis and neovascularization following hindlimb ischemia. METHODS AND RESULTS: Reduced vascularization assessed by real-time 3-dimensional Vevo ultrasound imaging and CD31 staining was evident in Trail(-/-) mice after ischemia, and associated with reduced capillary formation and increased apoptosis. Notably, adenoviral TRAIL administration significantly improved limb perfusion, capillary density, and vascular smooth-muscle cell content in both Trail(-/-) and wildtype mice. Fibroblast growth factor-2, a potent angiogenic factor, increased TRAIL expression in human microvascular endothelial cell-1, with fibroblast growth factor-2-mediated proliferation, migration, and tubule formation inhibited with TRAIL siRNA. Both fibroblast growth factor-2 and TRAIL significantly increased NADPH oxidase 4 (NOX4) expression. TRAIL-inducible angiogenic activity in vitro was inhibited with siRNAs targeting NOX4, and consistent with this, NOX4 mRNA was reduced in 3-day ischemic hindlimbs of Trail(-/-) mice. Furthermore, TRAIL-induced proliferation, migration, and tubule formation was blocked by scavenging H2O2, or by inhibiting nitric oxide synthase activity. Importantly, TRAIL-inducible endothelial nitric oxide synthase phosphorylation at Ser-1177 and intracellular human microvascular endothelial cell-1 cell nitric oxide levels were NOX4 dependent. CONCLUSIONS: This is the first report demonstrating that TRAIL can promote angiogenesis following hindlimb ischemia in vivo. The angiogenic effect of TRAIL on human microvascular endothelial cell-1 cells is downstream of fibroblast growth factor-2, involving NOX4 a
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1372893210
- Document Type :
- Electronic Resource