Back to Search Start Over

Dynamic Stabilization of DC Microgrids using ANN-Based Model Predictive Control

Authors :
Akpolat, Alper Nabi
Habibi, Mohammad Reza
Baghaee, Hamid Reza
Dursun, Erkan
Kuzucuoglu, Ahmet Emin Emin
Yang, Yongheng
Dragicevic, Tomislav
Blaabjerg, Frede
Akpolat, Alper Nabi
Habibi, Mohammad Reza
Baghaee, Hamid Reza
Dursun, Erkan
Kuzucuoglu, Ahmet Emin Emin
Yang, Yongheng
Dragicevic, Tomislav
Blaabjerg, Frede
Source :
Akpolat , A N , Habibi , M R , Baghaee , H R , Dursun , E , Kuzucuoglu , A E E , Yang , Y , Dragicevic , T & Blaabjerg , F 2022 , ' Dynamic Stabilization of DC Microgrids using ANN-Based Model Predictive Control ' , IEEE Transactions on Energy Conversion , vol. 37 , no. 2 , pp. 999-1010 .
Publication Year :
2022

Abstract

Over the past decade, the high penetration of renewable-based distributed generation (DG) units has witnessed a considerable rise in electrical networks. In this context, direct current (DC) microgrids based on DGs are being preferred due to having less complexity for the establishment and control. At the same time, they offer higher efficiency and reliability compared to their alternating current (AC) counterparts. This paper proposes a new model predictive control (MPC)-trained artificial neural network (ANN) control strategy being an ANN-MPC instead of conventional cascaded-proportional-integral (PI)-trained ANN control for dynamic damping of photovoltaic (PV)-battery-based grid-connected DC microgrids. Unlike traditional controllers, the proposed control approach more rapidly attains generation-load power balancing under variable climate input (meteorological sensor data) and output (load demand), hence achieving quick DC-bus voltage damping. The proposed ANN-MPC scheme is examined under different operating conditions, and the results are compared with the ANN-based conventional PI controller. The results show the proposed control strategy's efficacy to lessen the instability issues and achieve effective attenuation of oscillations in DC microgrids.

Details

Database :
OAIster
Journal :
Akpolat , A N , Habibi , M R , Baghaee , H R , Dursun , E , Kuzucuoglu , A E E , Yang , Y , Dragicevic , T & Blaabjerg , F 2022 , ' Dynamic Stabilization of DC Microgrids using ANN-Based Model Predictive Control ' , IEEE Transactions on Energy Conversion , vol. 37 , no. 2 , pp. 999-1010 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1372614887
Document Type :
Electronic Resource