Back to Search
Start Over
Tem study of oxygen partial pressure effect on early lsm-ysz surface interactions in solid oxide fuel cells
- Source :
- Wang , H J , Chen , M , Liu , Y L , Bowen , J R & Theil Kuhn , L 2021 , ' Tem study of oxygen partial pressure effect on early lsm-ysz surface interactions in solid oxide fuel cells ' , Electronic Device Failure Analysis , vol. 23 , no. 2 , pp. 22-32 .
- Publication Year :
- 2021
-
Abstract
- The LSM-YSZ interactions along the cathode/electrolyte interface of solid oxide fuel cells operated at 750 °C with ambient air or oxygen as cathode gas are investigated. Secondary phase formation across the LSM/YSZ interface is examined by transmission electron microscopy (TEM), energy-dispersive x-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and energy-filtered TEM (EFTEM). Two substantially different LSM-YSZ reactions are observed. In the air-tested cell, Zr-rich phases are found to form inside the LSM which is in contact with YSZ. The Zr-rich phases are proposed to be a precursor phase of insulating zirconate and are probably responsible for aggravating cathode degradation by blocking the triple-phase boundary (TPB) active sites. In the oxygen-tested cell, no formation of Zr-rich phases occurs because the LSM could still maintain its A-site deficiency in higher oxygen partial pressure. Although formation of a Mn3O4 phase along the LSM/YSZ interface is observed, the absence of a zirconate phase allows the TPBs to remain unimpaired to a large extent and therefore, the cell exhibits milder cathode degradation. Theoretical calculations of the Mn solubility in the LSM and YSZ as a function of oxygen partial pressure and temperature is also performed, providing an explanation for the observed difference of LSM stability, LSM-YSZ interactions in air and in pure oxygen, respectively.
Details
- Database :
- OAIster
- Journal :
- Wang , H J , Chen , M , Liu , Y L , Bowen , J R & Theil Kuhn , L 2021 , ' Tem study of oxygen partial pressure effect on early lsm-ysz surface interactions in solid oxide fuel cells ' , Electronic Device Failure Analysis , vol. 23 , no. 2 , pp. 22-32 .
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1372614553
- Document Type :
- Electronic Resource