Back to Search Start Over

THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites.

Authors :
Chang, Hsiao-Han
Pascual, Mercedes1
Chang, Hsiao-Han
Worby, Colin J
Yeka, Adoke
Nankabirwa, Joaniter
Kamya, Moses R
Staedke, Sarah G
Dorsey, Grant
Murphy, Maxwell
Neafsey, Daniel E
Jeffreys, Anna E
Hubbart, Christina
Rockett, Kirk A
Amato, Roberto
Kwiatkowski, Dominic P
Buckee, Caroline O
Greenhouse, Bryan
Chang, Hsiao-Han
Pascual, Mercedes1
Chang, Hsiao-Han
Worby, Colin J
Yeka, Adoke
Nankabirwa, Joaniter
Kamya, Moses R
Staedke, Sarah G
Dorsey, Grant
Murphy, Maxwell
Neafsey, Daniel E
Jeffreys, Anna E
Hubbart, Christina
Rockett, Kirk A
Amato, Roberto
Kwiatkowski, Dominic P
Buckee, Caroline O
Greenhouse, Bryan
Source :
PLoS computational biology; vol 13, iss 1, e1005348; 1553-734X
Publication Year :
2017

Abstract

As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.

Details

Database :
OAIster
Journal :
PLoS computational biology; vol 13, iss 1, e1005348; 1553-734X
Notes :
application/pdf, PLoS computational biology vol 13, iss 1, e1005348 1553-734X
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367424431
Document Type :
Electronic Resource