Back to Search Start Over

Optimal Selection of Microarray Analysis Methods Using a Conceptual Clustering Algorithm

Authors :
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Rubio Escudero, Cristina
Romero Zaliz, Rocío
Cordón, Óscar
Harari, Óscar
Val, Coral del
Zwir, Igor
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla. TIC-254: Data Science and Big Data Lab
Rubio Escudero, Cristina
Romero Zaliz, Rocío
Cordón, Óscar
Harari, Óscar
Val, Coral del
Zwir, Igor
Publication Year :
2006

Abstract

The rapid development of methods that select over/under expressed genes from microarray experiments have not yet matched the need for tools that identify informational profiles that differentiate between experimental condi tions such as time, treatment and phenotype. Uncertainty arises when methods devoted to identify significantly expressed genes are evaluated: do all microar ray analysis methods yield similar results from the same input dataset? do dif ferent microarray datasets require distinct analysis methods?. We performed a detailed evaluation of several microarray analysis methods, finding that none of these methods alone identifies all observable differential profiles, nor subsumes the results obtained by the other methods. Consequently, we propose a proce dure that, given certain user-defined preferences, generates an optimal suite of statistical methods. These solutions are optimal in the sense that they constitute partial ordered subsets of all possible method-associations bounded by both, the most specific and the most sensitive available solution.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1367112716
Document Type :
Electronic Resource